Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T12:59:45.784Z Has data issue: false hasContentIssue false

Selection of relevant non-target herbivores for monitoringthe environmental effects of Bt maize pollen

Published online by Cambridge University Press:  15 June 2003

Gregor Schmitz
Affiliation:
Botanical Garden, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
Detlef Bartsch
Affiliation:
Robert Koch Institute, center for Gene Technology, Postfach 650280, 13302 Berlin, Germany
Peter Pretscher
Affiliation:
Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genes of Bacillus thuringiensis var. kurstaki (Berliner) that encode lepidopteran-specific toxins were engineered into maize for protection against the European Corn Borer, Ostrinia nubilalis (Hbn.). Recent data suggest that Lepidoptera may be negatively affected, if maize pollen contains high amounts of Bt toxin and is diposited on host plants near maize fields. Monitoring the environmental effects of commercial Bt maize fields requires effective use of limited financial and logistical resources. The aim of this study was to develop and apply tools for selecting relevant herbivore species for the field monitoring of environmental Bt toxin effects via pollen deposition. We first present a theoretical selection tree based on “risk index of Bt pollen for herbivores” (IBtp). Our index consists of five classes from zero (not relevant) to four (highly relevant) derived from data on potential temporal and spatial coincidence of pollen exposure (A), feeding mode (B), susceptibility to lepidopteran-specific Bt toxins (C) and hazard to rare and/or endangered species (“Red List”) (D). We then screened the Macrolepidoptera database LEPIDAT to identify relevant species in Germany. Finally, we also applied the index to species found in a local biocoenotic field study (Bonn, Western Rhineland, Germany). Approximately 7% of the German Macrolepidoptera species mainly occur in farmland areas and were selected as being potentially affected by Bt pollen exposure. Of these species, 14% (= 1% of total) were found to be potentially exposed on a regional scale. The combination of IBtp and database screening enables us to pre-select species for monitoring purposes.

Type
Research Article
Copyright
© ISBR, EDP Sciences, 2003

References

Ammann K, Jacot Y, Rufener Al-Mazyad P (1996) Field release of transgenic crop in Switzerland, an ecological risk assessment. In Schulte E, Käppeli O, eds, Gentechnisch veränderte krankheits- und schädlingsresistente Nutzpflanzen - Eine Option für die Landwirtschaft, Schwerpunktprogramm Biotechnologie des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, Bern, pp 101-158
Bartsch, D, Schuphan, I (2002) Lessons we can learn from ecological biosafety research. J. Biotechnol. 98: 71-77 CrossRef
Brookes, G (2002) The farm level impact of using Bt maize in Spain. Brookes West Report, Canterbury UK, 23 p
Bourguet, D, Chaufaux, J, Micoud, A, Delos, M, Naibo, B, Bombarde, F, Marque, G, Eychenne, N, Pagliari, C (2002) Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environ. Biosafety Res. 1: 49-60 CrossRef
Fearing, PL, Brown, D, Vlachos, D, Meghji, M, Privalle, L (1996) Quantitative analysis of CryIA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Mol. Breeding 3: 169-176 CrossRef
Felke, M, Lorenz, N, Langenbruch, GA (2002) Laboratory studies on the effects of pollen from Bt-maize on larvae of some butterfly species. J. Appl. Entomol. 126: 320-325 CrossRef
Franz JM, Krieg A (1982) Biologische Schädlingsbekäm- pfung. Paul Parey, Hamburg, Berlin, 252 p
Frederick RJ, Pilsucki RW (1991) Nontarget species testing of microbial products for the use in the environment. In Levin MA, Strauss HS, eds, Risk assessment in genetic engineering. McGraw-Hill, New York, pp 32-50
Friese, G, Müller, J, Dunger, W, Hempel, W, Klausnitzer, B (1973) Habitatkatalog für das Gebiet der, DDR (Entwurf). Entomologische Nachrichten 17: 41-77
Gaedike R, Heinicke W (1999) Verzeichnis der Schmetter-linge Deutschlands. Fauna Germanica Vol. 3. Entomologische Nachrichten Berichte, Supplement 5, 216 p
Gilliland, A, Chambers, CE, Bone, JE, Ellar, DJ (2002) Role of Bacillus thuringiensis Cry1 δ-endotoxin binding in determing potency during lepidopteran larval development. Appl. Environ. Microbiol. 68: 1509-1515 CrossRef
Glare TR, O'Callaghan M (2000) Bacillus thuringiensis, Biology, Ecology and Safety. John Wiley and Sons LTD, Chichester, 350 p
Gordon, HT (1961) Nutritional factors in insect resistance to chemicals. Annu. Rev. Entomol. 6: 27-54 CrossRef
Guihard, G, Laprade, R, Schwartz, JL (2001) Unfolding affects insect cell permeabilization of Bacillus thuringiensis Cry1C toxin. Biochim. Biophys. Acta 1512: 110-119 CrossRef
Haarmann, K, Pretscher, P (1993) Zustand und Zukunft der Naturschutzgebiete in Deutschland. Schriftenreihe Landschaftspflege Naturschutz 39: 1-266
Hellmich, RL, Siegfried, BD, Sears, MK, Stanley-Horn, DE, Daniels, MJ, Mattila, HR, Spencer, T, Bidne, KG, Lewis, LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc. Natl. Acad. Sci. USA 98: 11925-11930 CrossRef
Hilbeck, A, Baumgartner, M, Fried, PM, Bigler, F (1998a) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera, Chrysopidae). Environ. Entomol. 27: 480-487 CrossRef
Hilbeck, A, Moar, WJ, Pusztai-Carey, M, Filippini, A, Bigler, F (1998b) Toxicity of Bacillus thuringiensis CryIAb to the predator Chrysoperla carnea (Neuroptera, Chrysopidae). Environ. Entomol. 27: 1-9
Hua G, Masson, L, Jurat-Fuentes JL, Schwab G, Adang MJ (2001) Binding analyses of Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Appl. Environ. Microbiol. 67: 872-879
Klausnitzer, B (1977) Evolution der Insekten als Einnischungs-prozeß bei Angiospermen. Biologische Rundschau 15: 366-377
Kleiner, K (1999) Monarchs under siege. New Sci. 162: 2187
Krieg A, Langenbruch GA (1981) Susceptibility of arthropod species to Bacillus thuringiensis. In Burges HD, ed, Microbial Control of pest and plant diseases 1970-1980. Academic Press, London, pp 837-896
Losey, JE, Rayor, LS, Carter, ME (1999) Transgenic pollen harms monarch larvae. Nature 399: 214 CrossRef
Lozzia GC (1999) Biodiversity and structure of ground beetle assemblages (Coloptera, Carabidae) in Bt corn and its effects on non target insects, Bolletino Zoologia Agrocultura Bachicoltura 31: 37-58
Lozzia, GC, Furlanis, C, Manachini, B, Rigamonti, IE (1998) Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera Chrysopidae). Bolletino Zoologia Agrocultura Bachicoltura 30: 153-164
NAS - National Academy of Science USA (2002) Environmental effects of transgenic plants: The scope and adequacy of Regulation. National Academic Press, Washington D.C., 320 p
New, TR, Pyle, RM, Thomas, JA, Hammond, PC (1995) Butterfly conservation management. Annu. rev. entomol. 40: 57-83 CrossRef
Oberdorfer E (1983) Süddeutsche Pflanzengesellschaften. Part 3, G. Fischer, Stuttgart, New York, 455 p
Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora. E. Ulmer, Stuttgart, 1500 p
Oberhauser, KS, Prysby, MD, Mattila, HR, Stanley-Horn, DE, Sears, MK, Dively, G, Olson, E, Pleasants, JM, Lam, WKF, Hellmich, RL (2001) Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl. Acad. Sci. USA 98: 11913-11918 CrossRef
Plachter H (1991) Naturschutz. G. Fischer, Berlin, UTB 1563, 463 p
Pleasants, JM, Hellmich, RL, Dively, GP, Sears, MK, Stanley-Horn, DE, Mattila, HR, Foster, JE, Clark, TL, Jones, GD (2001) Corn pollen distribution on milkweeds in and near cornfields. Proc. Natl. Acad. Sci. USA 98: 11919-11924 CrossRef
Pretscher, P (1998) Rote Liste der Großschmetterlinge (Macrolepidoptera). In Binot, M, Bless, R, Boye, P, Gruttke, H, Pretscher, P, eds, Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe Landschaftspflege Naturschutz 55: 87-111
Pretscher, P, Kleifges, P (2000) Die Schmetterlingsdatenbank, LEPIDAT des Bundesamtes für Naturschutz (BfN): Grundlage für die Erstellung der Roten Liste gefährdeter Großschmetterlinge Deutschlands. Schriftenreihe Landschaftspflege Naturschutz 65: 51-70
Salama, HS, Sharaby, AF (1988) Effects of exposure to sublethal doses of Bacillus thuringiensis /Berl.) on the development of the greasy cutworm Agrotis ypsilon (Hufn.). J. Appl. Entomol. 106: 396-401 CrossRef
Schmitz, G, Bartsch, D (2001) Biozoenotische Untersuchungen in Maisfeldern bei Bonn und Aachen. Mitteilungen Deutsche Gesellschaft Allgemeine Angewandte Entomologie 13: 615-618
Schuler, TH, Potting, RP, Denholm, I, Poppy, GM (1999) Parasitoid behaviour and Bt plants. Nature 400: 825-826 CrossRef
Schuler, TH, Denholm, I, Jouanin, L, Clark, SJ, Clark, AJ, Poppy, GM (2001) Population-scale laboratory studies of the effect of transgenic plants on non-target insects. Mol. Ecol. 10: 1845-1853 CrossRef
Sears MK, Stanley-Horn D (2000) Impact of Bt maize pollen on monarch butterfly populations. In Fairbairn C, Scoles G, McHughen A, eds, Proceedings of the 6th International Symposium on the Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, pp 120-130
Sears, MK, Hellmich, RL, Stanley-Horn, DE, Oberhauser, KS, Pleasants, JM, Mattila, HR, Siegfried, BD, Dively, GP (2001) Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA 98: 11937-11942 CrossRef
Stanley-Horn, DE, Dively, GP, Hellmich, RL, Mattila, HR, Sears, MK, Rose, R, Jesse, LCH, Losey, JE, Obrycki, JJ, Lewis, L (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc. Natl. Acad. Sci. USA 98: 11931-11936 CrossRef
Theiling, KM, Croft, BA (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agric. Ecosyst. Environ. 21: 191-218 CrossRef
Villiger M (1999) Effekte transgener insektenresistenter Bt-Kulturpflanzen auf Nichtzielorganismen am Beispiel der Schmetterlinge. WWF Schweiz Eigenverlag 51 p
Wagner, DL, Peacock, JW, Carter, HL, Talley, SE (1996) Field Assessment of Bacillus thuringiensis on Nontarget Lepidoptera. Environ. Entomol. 25: 1444-1454 CrossRef
Wraight, CL, Zangerl, AR, Caroll, MJ, Berenbaum, MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Natl. Acad. Sci. USA 97: 7700-7703 CrossRef
Zangerl, AR, McKenna, D, Wraight, CL, Carroll, M, Ficarello, P, Warner, R, Berenbaum, MR (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908-11912 CrossRef