Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:18:56.415Z Has data issue: false hasContentIssue false

Pyrolysis-field ionization mass spectrometry of rhizodeposits – a new approach to identify potential effects of genetically modified plants on soil organisms

Published online by Cambridge University Press:  19 September 2006

Alexei Melnitchouck
Affiliation:
Environmental SolutionsTM Remediation Services, 807 Manning Road N.E., Suite #100, Calgary, AB T2E 7M8, Canada
Peter Leinweber
Affiliation:
Institute for Land Use, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
Inge Broer
Affiliation:
Institute for Land Use, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
Kai-Uwe Eckhardt
Affiliation:
Institute for Land Use, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The objectives of the present study were (1) to investigate the qualitative composition of rhizodeposits leached from soils cropped with non-transgenic and genetically modified (GM) potatoes, and disclose if there were GM-specific modifications in potato rhizodeposition, and (2) to compare these results with conventional bulk parameters of microbial activity in soil. We have raised potatoes from a non-transgenic line (Solanum tuberosum L. cv. Désirée) and three GM lines, which expressed a gene for the resistance to kanamycin (DLH 9000) and a gene for T4 lysozyme (DL10 and DL12). A sandy soil placed in 340 cm3-“CombiSart” containers was used, from which the rhizodeposit was leached after a six-week growth period. The freeze-dried leachates were analyzed by pyrolysis-field ionization mass spectrometry (Py-FIMS). The Py-FI mass spectra gave detailed molecular-chemical information about the composition of leachates, indicating that the potato growth generally altered the composition of the soil solution. Moreover, a principal component analysis of the mass spectra showed differences between the leachates from the non-transgenic parent line and the GM potatoes as well as among the latter group. However, these differences in molecular composition could not be assigned to the release of T4-lysozyme into soil. Dehydrogenase activity and substrate-induced soil respiration as more common bulk parameters of soil microbial activity failed to disclose any significant effects of the various potatoes grown. The limitations of the described rhizodeposit leaching and analysis for risk assessment of GM potato cropping under field conditions are discussed critically. However, it could be concluded that the Py-FI mass spectrometric “fingerprint” can be developed as a fast, comprehensive, highly sensitive and reproducible analytical approach to discern any effects GM-crops may exert on soil ecological parameters.

Type
Research Article
Copyright
© ISBR, EDP Sciences, 2006

References

Ahrenholz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl. Environ. Microb. 66: 1862–1865
Biologische Bundesanstalt für Land- und Forstwirtschaft (2001) Entwicklungsstadien mono- und dikotyler Pflanzen. BBCH Monografie, 2. Auflage, S. 45–50
Brady NC (1990) The nature and properties of soil. Macmillan Publishing Company, New York
Bruinsma, M, Kowalchuk, GA, van Veen, JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol. Fertil. Soils 37: 329337
Brusetti, L, Francia, P, Bertolini, C, Pagliuca, A, Borin, S, Sorlini, C, Abruzzese, A, Sacchi, G, Viti, C, Giovannetti, L, Giuntini, E, Bazzicalupo, M, Daffonchio, D (2004) Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. Plant Soil 266: 1121 CrossRef
Catchpole, GS, Beckmann, M, Enot, DP, Mondhe, M, Zywicki, B, Taylor, J, Hardy, N, Smith, A, King, RD, Kell, DB, Fiehn, O, Draper, J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. USA 102: 1445814462 CrossRef
Cowgill SE, Bardgett RD, Kiezenbrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J. Appl. Ecol. 39: 915–923
De Vries, J, Harms, K, Broer, I, Kriete, G, Mahn, A, Düring, K, Wackernagel, W (1999) The acteriolytic activity in transgenic Potato. Syst. Appl. Microbiol. 22: 280286 CrossRef
Düring K, Mahn A (1999) Freisetzung und Resistenzprüfung transgener Lysozym-Kartoffeln. In: Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen (Schiemann J, Hrg). Proceedings zum BMBF-Workshop, BBA Braunschweig, 25-26 Mai 1998. BEO (Projektträger Biologie, Energie, Umwelt des BMBF), Jülich. S. 39-44
Gransee, A, Wittenmayer, L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J. Plant Nutr. Soil Sci. 163: 381385 3.0.CO;2-7>CrossRef
Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. In Brauer D, Röbbelen G, Töpfer R, eds, BioEngineering für Rapssorten nach Maß, Vorträge für Pflanzenzüchtung 45, 153–171
Heuer, H, Kroppenstedt, RM, Lottmann, J, Berg, G, Smalla, K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microb. 68: 13251335 CrossRef
Hütsch, BW, Augustin, J, Merbach, W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 165: 397407 3.0.CO;2-C>CrossRef
Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163: 459–480
Kjøller, R, Rosendahl, S (2000) Effect of fungicides on arbuscular mycorrhizal fungi: different responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31: 361365
Kowalski, BR, Bender, CF (1972) Pattern recognition. A powerful approach to interpreting chemical data. J. Am. Chem. Soc. 94: 56325639 CrossRef
Kuzyakov, Y, Sinyakina, S (2001) A novel method for separating root-derived organic compounds from root respiration in non-sterilized soils. J. Plant Nutr. Soil Sci. 164: 511517 3.0.CO;2-T>CrossRef
Kuzyakov, Y, Leinweber, P, Sapronov, D, Eckhardt, K-U (2003) Quantitative assessment of root exudates in non-sterile soil by analytical pyrolysis. J. Plant Nutr. Soil Sci. 166: 719723 CrossRef
Leinweber, P, Schulten, H-R, Kalbitz, K, Meißner, R, Janke, H (2001) Fulvic acid composition in degraded fenlands. J. Plant Nutr. Soil Sci. 164: 371379 3.0.CO;2-9>CrossRef
Lottmann, J, Heuer, H, Smalla, K, Berg, G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant associated bacteria. FEMS Microbiol. Ecol. 29: 365377 CrossRef
Melnitchouck, A, Leinweber, P, Eckhardt, K-U, Beese, R (2005) Qualitative differences between day- and nighttime rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis-field ionization mass spectrometry. Soil Biol. Biochem. 37: 155162 CrossRef
Milling, A, Smalla, K, Maidl, FX, Schloter, M, Munch, JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266: 2339 CrossRef
Paul EA, Clark FE (1996) Soil Microbiology and Biochemistry, 2nd ed, Academic Press, San Diego
Rausch, C, Daram, P, Brunner, S, Jansa, J, Lalol, M, Leggewie, G, Amrhein, N, Bucher, M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462466 CrossRef
Schulten H-R (1996) Direct Pyrolysis-Mass Spectrometry of Soils: A Novel Tool in Agriculture, Ecology, Forestry and Soil Science. In Yamasaki S, Boutton TW, eds, Mass spectrometry of soils, Marcel Dekker, New York, pp 373–436
Schulten, H-R, Leinweber, P (1999) Thermal stability and composition of mineral-bound organic matter in density fractions of soil. Eur. J. Soil Sci. 50: 237248 CrossRef
Schulten H-R, Leinweber P, Jandl G (2002) Analytical pyrolysis of humic substances and dissolved organic matter in water. In Frimmel FH, Abbt-Braun G, Heumann K-G, Hock B, Lüdemann H-D, Spiteller M, eds, Refractory Organic Substances in the Environment, Wiley-VCH, Weinheim, pp 163–187
Schulten H-R, Leinweber P, Schnitzer M (1998) Analytical Pyrolysis and Computer Modelling of Humic and Soil Particles. In Structure and Surface Reactions of Soil Particles, John Wiley & Sons, pp 281–324
Sessitsch, A, Gyamfi, S, Tscherko, D, Gerzabek, MH, Kandeler, E (2004) Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant Soil 266: 105116 CrossRef
Simek, M, Hopkins, DW, Kalcik, J, Picek, T, Santruckova, H, Stana, J, Travnik, K (1999) Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol. Fertil. Soils 29: 300308
Sorge, C, Schnitzer, M, Schulten, H-R (1993) In-source pyrolysis-field ionization mass spectrometry and Curie-point gas chromatography/mass spectrometry of amino acids in humic substances and soils. Biol. Fertil. Soils 16: 100110 CrossRef
StatSoft, Inc. (2002) Electronic Statistics Textbook. Tulsa, OK: StatSoft. http://www.statsoft.com/textbook/stathome.html (accessed August 5, 2002)
Tabatabai MA (1994) Soil enzymes. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai MA, Wollum A, eds, Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Soil Science Society of America, Madison/WI
Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenylte- trazoliumchlorid (TTC), Landwirtsch. Forsch. 21: 249– 258
Verhoef HA, van Gestel CAM (1995) Methods to Assess the Effects of Chemicals on Soils. In Linthurst RA, Bourdeau P, Tardiff RG, eds, Methods to Assess the Effects of Chemicals On Ecosystems, John Wiley & Sons, Chichester, pp 223– 257
Wood M (1995) Environmental Soil Biology, Blackie Academic and Professional, Glasgow, London