Published online by Cambridge University Press: 12 September 2007
Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic competence using plasmid pSKTG DNA and homologous DNA extracts. Control strain Acinetobacterbaylyi ADP1 was transformable with both DNA extracts. No transformable isolates were observed after treatment with plasmid pSKTG DNA. Two isolates, P34, identified as Pseudomonas trivialis and A19, identified as Pseudomonas fragi, were selected on the basis of the consistently higher Rp-resistant CFU numbers after treatment with DNA from Rp-resistant cells than with that from wild-type cells. P34 showed 2.1-fold and A19 1.5-fold higher Rp-resistant CFU numbers after treatment with DNA from homologous Rp-resistant cells versus that from wild-type cells. It is concluded that bacteria capable of in vitro capture and integration of exogenous DNA into their genomes are relatively rare in culturable bacterial communities associated with tomato and potato plants, or that conditions conducive to transformation were not met in transformation assays.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.