Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T22:28:37.698Z Has data issue: false hasContentIssue false

Ecological functions and economic value of the Neotropic Cormorant (Phalacrocorax brasilianus) in Los Olivitos Estuary, Venezuela

Published online by Cambridge University Press:  13 June 2011

KARINE GIL-WEIR
Affiliation:
Universidad del Zulia, Facultad Experimental de Ciencias, Laboratorio Ecologia y Sistemas, Maracaibo, Venezuela, and Ecosystems Advisors LP, P.O. Box 12015, College Station, TX 77842, USA. Email: [email protected]
ENRIQUE WEIR
Affiliation:
Universidad del Zulia, Facultad Experimental de Ciencias, Laboratorio Ecologia y Sistemas, Maracaibo, Venezuela, and Ecosystems Advisors, College Station, TX, USA. Email: [email protected]
CLARK L. CASLER
Affiliation:
Universidad del Zulia, Facultad de Humanidades, Maracaibo, Venezuela. Email: [email protected]
SARA ANIYAR
Affiliation:
The Beijer Institute, The Royal Swedish Academy of Sciences, Stockholm, Sweden. Email: [email protected]

Abstract

We present the ecological functions of cormorants and estimate the economic value of these functions to artisanal fishermen, as a valuation exercise for Neotropic Cormorants at Los Olivitos Estuary, Lake Maracaibo, Venezuela. Ecological functions were based on estimating the abundance, distribution and diet of cormorants; economic values were attached to a selection of goods, services and attributes. Based on available information, we selected four ecological–economic functions of cormorants: harvesting for food; contributors to fish diversity; indicators of fish schools; and contributors to fish biomass, due to guano production. Cormorants consumed nine commercial fish species. Mean consumption was 225 g/ind/day. All ecological–economic functions were positive except for the role as contributors to fish biomass. Total value of the cormorant population to fishermen was $5,429,703/year. Unlike many studies, our results show that Neotropic Cormorants have a negligible impact on artisanal fisheries. We emphasize the importance of these results for management policies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alzola, R., Muñoz, J., Marín, G., Prieto, A., and Andrade, J. (2009), ‘Variación estacional de los parámetros hematológicos, hemogasodinámicos, ácido-básicos y electrolíticos en el cormorán (Phalacrocorax brasilianus)’, Universidead del Zulia, Maracaibo, Venezuela, Boletín del Centro de Investigaciones Biológicas 43: 5975.Google Scholar
Barbier, E., Burgess, J., and Folke, C. (1994), Paradise Lost? The Ecological Economics of Biodiversity, London: Earthscan.Google Scholar
Barquete, V., Bugoni, L., and Vooren, C. (2008), ‘Diet of Neotropic Cormorant (Phalacrocorax brasilianus) in an estuarine environment’, Marine Biology 153: 431443.CrossRefGoogle Scholar
Barton, D. (1995), ‘Valoracion económica parcial de alternativas de manejo para los humedales del Terraba-Sierpe, Costa Rica’, M.Sc. thesis in Economic Policy, Universidad Nacional, Heredia, Costa Rica.Google Scholar
Begon, M., Harper, J., and Townsend, C. (2006), Ecology: Individuals, Populations and Communities, 3rd edn, Malden, MA: Blackwell Science.Google Scholar
Bojo, J., Maler, K.-G., and Unemo, L. (1992), Environment and Development: An Economic Approach, Dordrecht: Kluwer Academic Publishers.Google Scholar
Brock, W.A. and Xepapadeas, A. (2003),‘Valuing biodiversity from an economic perspective: a unified, economic, ecological and genetic approach’, American Economic Review 93: 15971614.CrossRefGoogle Scholar
Casaux, R.J., Di Prinzio, C.Y., Bertolin, M.L., and Tartara, M.A. (2009), ‘Diet of the Neotropic Cormorant Phalacrocorax olivaceus at West Chubut, Patagonia, Argentina’, Waterbirds 32: 444449.Google Scholar
Cauffopé, G. and Heymans, S.J.J. (2005), ‘Energy contents and conversion factors for sea lion's prey. Food web models and data for studying fisheries and environmental impacts on Eastern Pacific Ecosystems’, Fisheries Centre Research Reports 13: 225237.Google Scholar
Cooksey, K. (1984), ‘Role of diatoms in the mangrove habitat’, in Sneadaker, S.C. and Sneadaker, J.G. (eds), The Mangrove Ecosystem: Research Methods, Paris: UNESCO.Google Scholar
Duffy, D. (1995), ‘Why is the Double-Crested Cormorant a problem? Insights from cormorant ecology and human sociology’, Colonial Waterbirds 18: 2532.CrossRefGoogle Scholar
Gil de Weir, K. (2000), ‘Abundancia y dieta de la Cotúa Olivácea (Phalacrocrax olivaceus) en el Refugio de Fauna Silvestre y Reserva de Pesca Cienaga de Los Olivitos’, M.Sc. thesis, FEC, Universidad del Zulia, Venezuela.Google Scholar
Glahn, J. and Brugger, K. (1995), ‘The impact of Double-crested Cormorants on the Mississippi Delta catfish industry: a bioenergetics model’, Colonial Waterbirds 18: 168175.CrossRefGoogle Scholar
Glahn, J. and Stickley, A.R. (1995), ‘Wintering Double-crested Cormorants in the Delta region of the Mississippi: population levels and their impact on the catfish industry’, Colonial Waterbirds 18: 137142.CrossRefGoogle Scholar
Glahn, J., Tobin, M., and Blackwell, B. (2000), ‘A science-based initiative to manage Double-Crested Cormorant damage to Southern aquaculture’, USDA Issue, APHIS 11-55-010, USA.Google Scholar
Goulder, L.H. and Kennedy, D. (1997), ‘Valuing ecosystem services: philosophical bases and empirical methods’, in Daily, G. (ed.), Nature's Services: Societal Dependence on Natural Ecosystems, Washington, DC: Island Press, pp. 2348.Google Scholar
Hilty, S. (2003), Birds of Venezuela, 2nd edn, New Jersey: Princeton University Press.Google Scholar
Hilty, S. and Brown, W. (1986), A Guide to the Birds of Colombia, New Jersey: Princeton University Press.Google Scholar
Hobson, K.A. (2009), ‘Trophic interactions between cormorants and fisheries: toward a more quantitative approach using stable isotopes’, Waterbirds 32: 481616.CrossRefGoogle Scholar
Hughes, J.E., Deegan, L.A., Petterson, B.J., Holmes, R.M., and Fry, B. (2000), ‘Nitrogen flow through the food web in the oligohaline zone of a New England estuary’, Ecology 81: 433452.Google Scholar
Hustler, C. (1991), ‘The ecology of fish-eating birds on Lake Kariba, with special reference to the diving Pelecaniformes’, Doctoral thesis, Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe.Google Scholar
Johnsgard, P.A. (1993), Cormorants, Darters, and Pelicans of the World, Washington, DC: Smithsonian Institution Press.Google Scholar
Keith, J. (1995), ‘Management policies for cormorants in Canada’, Colonial Waterbirds 18: 234237.Google Scholar
Klein, E. (1998), ‘Diagnostico preliminar de la pesca artesanal en el Lago de Maracaibo’, Informe Final, INTECMAR, Universidad Simon Bolivar, Sartenejas, Venezuela.Google Scholar
Krutilla, J.V. (1967), ‘Conservation reconsidered’, The American Economic Review 57: 777786.Google Scholar
MacMillan, D.C., Phillip, L., Hanley, N., and Alvarez-Farizo, B. (2002), ‘Valuing the non-market benefits of wild goose conservation: a comparison of interview and group-based approaches’, Ecological Economics 43: 4959.CrossRefGoogle Scholar
Metrick, A. and Weitzman, M.L. (1998), ‘Conflicts and choices in biodiversity preservation’, Journal of Economic Perspectives 12: 2134.CrossRefGoogle Scholar
Miller, G. (1994), Ecologia y Medio Ambiente, Mexico: Grupo Editorial Iberoamerica.Google Scholar
Muñoz, J., Marín, G., Mata, A., and Zavala, R. (2007), ‘Trophic level and diet of Neotropic Cormorant Phalacrocorax olivaceus in a tropical coastal lagoon’, Resumenes, VIII Congreso de Ornitología Neotropical, Soc. de Ornitología Neotropical, 13–19 May 2007, Maturín, Venezuela.Google Scholar
Muñoz, J., Marín, G., Andrade, J., and Alzola, R. (2009), ‘Notas sobre la dieta de la cotúa olivácea (Phalacrocorax brasilianus) en una laguna marino-costera de la Peninsula de Araya, Venezuela’, Saber 20: 253258.Google Scholar
Nettleship, D. and Duffy, D. (1995), ‘The Double-Crested Cormorant: biology, conservation and management’, Colonial Waterbirds 18: 1256.Google Scholar
Odum, E.P. and Barrett, G.A. (2005), Fundamentals of Ecology, 5th edn, Belmont: Thomson Brooks/Cole.Google Scholar
Orta, J. (1992), ‘Family Phalacrocoracidae (Cormorants)’, in del Hoyo, J., Elliot, A. and Sargatal, J. (eds), Handbook of the Birds of the World, Volume 1, Barcelona: Lynx Editions.Google Scholar
Phelps, W. Jr. and Meyer de Schauensee, R. (1978), Una Guia de las Aves de Venezuela, Caracas: Graficas Armitano.Google Scholar
Price, Y. and Nickum, J. (1995), ‘Aquaculture and birds: the context for controversy’, Colonial Waterbirds 18: 3345.CrossRefGoogle Scholar
Rodríguez, A. and Lentino, M. (2002), ‘Population, diet and impact of neotropical cormorants in relation to shrimp production in Northeastern Venezuela’, 23rd International Ornithological Congress, Beijing, China.Google Scholar
SARPA (1996), ‘Produccion Pesquera de Lago de Maracaibo, Research Report, Servicio Autonomo de los Recursos Pesquero y Acuicolas, Ministerio de Agricultura y Cria’ (Autonomous Service of Fishery and Aquacultural Resources), Caracas.Google Scholar
Stotz, D.F., Fitzpatrick, J., Parker, T. III, and Moskovits, D. (1996), Neotropical Birds. Ecology and Conservation, Chicago: University of Chicago Press.Google Scholar
Suter, W. (1991), ‘Effects of piscivorous birds on freshwater fish populations – a review’, Journal of Ornithology 132: 2945.CrossRefGoogle Scholar
Suter, W. (1994), ‘Overwintering waterfowl on Swiss lakes: how are abundance and species richness influenced by trophic status and lake morphology?’, Hydrobiologia 279/280: 114.Google Scholar
Suter, W. (1995a), ‘Are cormorants Phalocrocorax carbo wintering in Switzerland approaching carrying capacity? An analysis of increase patterns and habitat choice’, Ardea 83: 255266.Google Scholar
Suter, W. (1995b), ‘The effect of predation by wintering cormorants Phalacrocorax carbo on grayling Thymallus thymallus and trout (Salmonidae) populations: two case studies from Swiss rivers’, Journal of Applied Ecology 32: 2946.CrossRefGoogle Scholar
Telfair, R.C. II and Morrison, M.L. (1995), ‘Neotropic Cormorant (Phalacrocorax brasilianus)’, in Poole, A. and Gill, F. (eds), The Birds of North America, No. 137, Philadelphia: Academy of Natural Sciences and Washington, DC: American Ornithologists’ Union, pp. 122.Google Scholar
Wanink, J.H. and Chifamba, O.C. (1999), ‘Interactions between freshwater fisheries and birds’, in Farina, A. (ed.), Perspective in Ecology, Leiden: Backhuys Publishers, pp. 219225.Google Scholar
Weir, E., Gil, K., Casler, C., Urbina, A., Andrade, G., Buonocore, R., et al. (2006), ‘Informe Final Proyecto Biodiversidad en la Cienaga de Los Olivitos’, No. 98003428, FONACIT, Venezuela.Google Scholar
Weitzman, M.L. (1992), ‘On diversity’, Quarterly Journal of Economics 107: 363406.CrossRefGoogle Scholar
Weitzman, M.L. (1993), ‘What to preserve? An application of diversity theory to crane conservation’, Quarterly Journal of Economics 108: 157183.Google Scholar
Weitzman, M.L. (1998), ‘The Noah's Ark problem’, Econometrica 66: 12791298.Google Scholar
Weller, M.W. (1999), Wetland Birds. Habitat Resources and Conservation Implications, Cambridge: Cambridge University Press.Google Scholar
Weseloh, D., Ewins, P., Struger, J., Mineau, P., Bishop, C., Postupalsky, S., and Ludwig, J. (1995), ‘Double-crested Cormorants of the Great Lakes: changes in population size, breeding distribution and reproductive output between 1913 and 1991’, Colonial Waterbirds 18: 4859.CrossRefGoogle Scholar