Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T10:33:35.875Z Has data issue: false hasContentIssue false

THE STOMATAL COMPLEX OF PODOCARPUS OBSERVED IN CROSS-SECTION USING CRYOFRACTURE: A PRELIMINARY STUDY

Published online by Cambridge University Press:  31 July 2017

M. Whiting
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, Scotland, UK.
R. R. Mill*
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK.
C. E. Jeffree
Affiliation:
Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, Scotland, UK.
*
E-mail for correspondence: [email protected]
Get access

Abstract

Cryofracture of living material and fracture at room temperature of herbarium material were used to obtain cross-sections of the stomatal complexes of four species of Podocarpus (Podocarpaceae) for scanning electron microscopy. Cross-sections of the stomata of one species in Podocarpus subgenus Foliolatus section Foliolatus (Podocarpus rubens), one in Podocarpus section Globulus (Podocarpus beecherae), one in Podocarpus subgenus Foliolatus section Longifoliolatus (Podocarpus insularis) and one in subgenus Podocarpus section Australis (Podocarpus nivalis) were studied. The architecture of the stomatal complex, including the wax plug, is described. It was found that the wax plug sits high in the stomatal antechamber in Podocarpus rubens, P. beecherae and Podocarpus decipiens and about halfway up the chamber in P. nivalis. A ridge, which appears to correspond to the crease where the guard cells meet, exists on the underside of the wax plug in Podocarpus beecherae, P. decipiens and P. rubens; its presence in P. nivalis requires confirmation. In addition, ridges within the stomatal antechamber were observed when viewing the cross-sections of Podocarpus decipiens and P. rubens, the internal surface of the cuticle of P. decipiens, Podocarpus teysmannii, P. insularis and Podocarpus milanjianus, and the external surface of the cuticle of Podocarpus chinensis, Podocarpus macrophyllus and Podocarpus pilgeri. These ridges may consist of wax and be a result of epitaxis.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh (2017) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L. & Boulter, M. C. (1974). A controlled method of comparative study for Taxodiaceous leaf cuticles. Bot. J. Linn. Soc. 69 (4): 277286.Google Scholar
Appleby, R. F. & Davies, W. J. (1983). The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference. Ann. Bot. n.s. 52 (4): 459468.Google Scholar
Buchholz, J. T. & Gray, N. E. (1948). A taxonomic revision of Podocarpus. I. The sections of the genus and their subdivisions with special reference to leaf anatomy. J. Arnold Arbor. 29 (1): 4963.Google Scholar
Deckert, R. J., Melville, L. H. & Peterson, R. L. (2001). Epistomatal chambers in the needles of Pinus strobus L. (eastern white pine) function as microhabitat for specialized fungi. Int. J. Pl. Sci. 162 (1): 181189.CrossRefGoogle Scholar
de Laubenfels, D. J. (1985). A taxonomic revision of the genus Podocarpus . Blumea 30 (2): 251278.Google Scholar
de Laubenfels, D. J. (2003). A new species of Podocarpus from the maquis of New Caledonia. New Zealand J. Bot. 41 (4): 715718.CrossRefGoogle Scholar
de Laubenfels, D. J. (2015). New sections and species of Podocarpus based on the taxonomic status of P. neriifolius (Podocarpaceae) in tropical Asia. Novon 24 (2): 133152.CrossRefGoogle Scholar
Farjon, A. (2010). A Handbook of the World's Conifers. Leiden: E. J. Brill.CrossRefGoogle Scholar
Florin, R. (1931). Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. 1. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kongl. Svenska Vetenskapsakad. Handl., ser. 3, 10 (1): 1588.Google Scholar
Gray, N. E. (1955). A taxonomic revision of Podocarpus IX. The South Pacific species of section Eupodocarpus, subsection F. J. Arnold Arbor. 36 (2): 199206 and plate 1.CrossRefGoogle Scholar
Hanover, J. W. & Reicosky, D. A. (1971). Surface wax deposits on foliage of Picea pungens and other conifers. Amer. J. Bot. 58 (7): 681687.Google Scholar
Jeffree, C. E., Johnson, R. P.C. & Jarvis, P. G. (1971). Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98 (1): 110.CrossRefGoogle ScholarPubMed
Johnson, R.W. & Riding, R.T. (1981). Structure and ontogeny of the stomatal complex in Pinus strobus L. and Pinus banksiana Lamb. Amer. J. Bot. 68 (2): 260268.Google Scholar
Karabourniotis, G., Tzobanoglou, D., Nikolopoulos, D. & Liakopoulos, G. (2001). Epicuticular phenolics over guard cells: exploitation for in situ stomatal counting by fluorescence microscopy and combined image analysis. Ann. Bot. n.s. 87 (5): 631639.Google Scholar
Kershaw, D. A. (1997). An investigation into the relationships of Nageia s.l. (Gymnospermae, Podocarpaceae). M.Sc. thesis, Royal Botanic Garden Edinburgh and University of Edinburgh.Google Scholar
Mill, R. R. & Whiting, M. (2012). Podocarpus orarius (Podocarpaceae), a new species from the Solomon Islands and a taxonomic clarification of Podocarpus spathoides from Malaysia. Gard. Bull. Singapore 64 (1): 171193.Google Scholar
Mohammadian, M. A., Hill, R. S. & Watling, J. R. (2009). Stomatal plugs and their impact on fungal invasion in Agathis robusta . Austral. J. Bot. 57 (5): 389395.Google Scholar
Morvan, J. (1987). Observation au microscope électronique à balayage des formations cireuses épicuticulaires (feuille-tige-cône femelle) chez Podocarpus macrophyllus (Thunb.) Don var. angustifolius Blume, Podocarpacées. Flora 179 (1): 4554.Google Scholar
Pariyar, S., Chang, S. C., Zinsmeister, D., Zhou, H., Grantz, D. A., Hunsche, M. & Burkhardt, J. (2017). Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest. Oecologia (epub ahead of print). Online. Available: doi: 10.1007/s00442-017-3894-4 (downloaded 20 June 2017).Google Scholar
Prior, S., Pritchard, S., Runion, G., Rogers, H., & Mitchell, R. (1997). Influence of atmospheric CO2 enrichment, soil N, and water stress on needle surface wax formation in Pinus palustris (Pinaceae). Amer. J. Bot. 84 (8): 10701077.CrossRefGoogle ScholarPubMed
Smith, A. C. (1979). Podocarpaceae. In: Smith, A. C. Flora Vitiensis Nova: a New Flora of Fiji (Spermatophytes Only), vol. 1, pp. 92–108. Lawai: Pacific Tropical Botanical Garden.CrossRefGoogle Scholar
Stark Schilling, D. M. & Mill, R. R. (2011). Cuticle micromorphology of Caribbean and Central American species of Podocarpus (Podocarpaceae). Int. J. Pl. Sci. 172 (5): 601631.CrossRefGoogle Scholar
Stockey, R. A., Frevel, B. J. & Woltz, P. (1998). Cuticle micromorphology of Podocarpus, subgenus Podocarpus, section Scytopodium (Podocarpaceae) of Madagascar and South Africa. Int. J. Pl. Sci. 159 (6): 923940.Google Scholar
Vovides, A. P. & Galicia, S. (2016). G-fibers and Florin ring-like structures in Dioon (Zamiaceae). Bot. Sci. 94 (2): 263268.Google Scholar
White, F., Dowsett-Lemaire, F. & Chapman, J. D. (2001). Evergreen forest flora of Malawi. Richmond: Royal Botanic Gardens, Kew.Google Scholar
Whiting, M. (2009). Cuticular micromorphology of Podocarpus as a systematic tool. M.Sc. thesis, Royal Botanic Garden Edinburgh and University of Edinburgh.Google Scholar
Yoshie, F. & Sara, A. (1985). Types of Florin rings, distributional patterns of epicuticular wax, and their relationships in the genus Pinus . Canad. J. Bot. 63 (12): 21502158.Google Scholar