Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T19:27:43.814Z Has data issue: false hasContentIssue false

PHYLOGENY, BIOGEOGRAPHY AND CHARACTER EVOLUTION OF DORSTENIA (MORACEAE)

Published online by Cambridge University Press:  18 October 2012

T. M. Misiewicz
Affiliation:
Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. Northwestern University, Plant Biology and Conservation, 2205 Tech Drive, Evanston, IL 60208, USA. Current address: University of California, Berkeley, Department of Integrative Biology, 3060 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. E-mail: [email protected]
N. C. Zerega
Affiliation:
Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. Northwestern University, Plant Biology and Conservation, 2205 Tech Drive, Evanston, IL 60208, USA.
Get access

Abstract

Dorstenia, the second largest genus (105 species) within the Moraceae, is the only genus in the family with woody, herbaceous and succulent species. All but one species of Dorstenia are restricted to the Neotropics or Africa, and it is the only genus in the family with an almost equal transatlantic distribution. This work presents the first molecular phylogeny and the first evolutionary study to examine origin and diversification within the genus. We inferred the phylogeny with ITS sequence data using Bayesian and maximum likelihood approaches. We tracked the evolution of distinct morphological characters and tested for correlated evolution in multiple characters. Time and place of Dorstenia’s origin were estimated to test a post-Gondwanan versus a Gondwanan origin hypothesis using fossil calibrations, Bayesian molecular dating, and maximum likelihood-based ancestral range reconstructions. Our phylogenetic analysis supports the monophyly of Dorstenia; previous subgeneric classifications are polyphyletic and must be re-evaluated. Woody habit, phanerophytic life form, macrospermy, and lack of storage organs are ancestral traits found in African Dorstenia. Evolution of woodiness and macrospermy are correlated. Dorstenia appears to have originated in Africa, radiated into the Neotropics and subsequently re-colonised Africa. Whether or not the extant distribution is the result of vicariance or dispersal is equivocal.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions of Automatic Control 19: 716723.Google Scholar
Alvarez, I. & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417434.Google Scholar
Bailey, C. D., Carr, T. G., Harris, S. A. & Hughes, C. E. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molec. Phylogenet. Evol. 29: 435455.Google Scholar
Barghoorn, E. (1964). Evolution of cambium in geologic time. In: Zimmermann, M. H. (ed.) The Formation of Wood in Forest Trees, pp. 317. New York and London: Academic Press.Google Scholar
Bawa, K. S., Perry, D. R. & Beach, J. H. (1985). Reproductive biology of tropical lowland rainforest trees. I. Sexual systems and incompatibility mechanisms. Amer. J. Bot. 72: 331410.Google Scholar
Berg, C. C. (2001). Moreae, Artocarpeae, and Dorstenia (Moraceae). New York: New York Botanical Garden Press.Google Scholar
Berg, C. C. & Hijman, M. E. E. (1999). The genus Dorstenia (Moraceae). Ilicifolia 2: 1211.Google Scholar
Böhle, U. R., Hilger, H. H. & Martin, W. F. (1996). Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 1174011745.Google Scholar
Burnham, R. J. & Graham, A. (1999). The history of neotropical vegetation: New developments and status. Ann. Missouri Bot. Gard. 86: 546589.Google Scholar
Chaudhry, B., Yasmeen, A., Husnain, T. & Riazuddin, S. (1999). Mini-scale genomic DNA extraction from cotton. Plant Mol. Biol. Rep. 17: 17.Google Scholar
Clayton, J. W., Soltis, P. S. & Soltis, D. E. (2009). Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst. Biol. 58: 395410.CrossRefGoogle Scholar
Clement, W. L. & Weiblen, G. D. (2009). Morphological evolution in the mulberry family (Moraceae). Syst. Bot. 34: 530552.Google Scholar
Collinson, M. E. (1989). The fossil history of the Moraceae, Urticaceae (including Cecropiaceae) and Cannabaceae. In: Crane, P. R. & Blackmore, S. (eds) Evolution, Systematics and Fossil History of the Hamamelidae, Vol. 2: ‘Higher’ Hamamelidae, pp. 319339. Oxford: Clarendon Press.Google Scholar
Conn, B. J., Banka, R. & Lee, L. L. (2006+). Plants of Papua New Guinea (www.pngplants.org; 30 June 2009).Google Scholar
Corner, E. J. H. (1967). Ficus in the Solomon Islands and its bearing on the Post-Jurassic history of Melanesia. Philos. Trans., Ser. B 254: 23159.Google Scholar
Datwyler, S. & Weiblen, G. (2004). On the origin of the fig: Phylogenetic relationships of Moraceae from ndhF sequences. Amer. J. Bot. 91: 767777.CrossRefGoogle ScholarPubMed
Drummond, A. J. & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. Biomed. Cent. Evol. Biol. 7: 214.Google Scholar
Drummond, A. J., Ho, S. Y. W., Phyllips, M. J. & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biol. 4: e88.CrossRefGoogle ScholarPubMed
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 17921797.Google Scholar
Feliner, G. N. & Rossello, J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec. Phylogenet. Evol. 44: 911919.Google Scholar
Felsenstein, J. (1973). Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Zool. 22: 240249.Google Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.Google Scholar
Field, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E. & Donoghue, M. J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82107.Google Scholar
Kim, S. C., Crawford, D. J., Francisco-Ortega, J. & Santos-Guerra, A. (1996). A common origin for woody Sonchus and five related genera in the Macaronesian islands: molecular evidence for extensive radiation. Proc. Natl. Acad. Sci. USA 93: 77437748.Google Scholar
Maddison, W. P. & Maddison, D. R. (2009). Mesquite: a modular system for evolutionary analysis, v2.6: http://mesquiteproject.orgGoogle Scholar
Magallon, S. & Sanderson, M. J. (2001). Absolute diversification rates in angiosperm clades. Evolution 55: 17621780.Google Scholar
McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral. J. Bot. 49: 271300.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Tweddle, J. C., Dickie, J. B., Smith, R., Leishman, M. R. et al. . (2007). Global patterns in seed size. Global Ecol. Biogeogr. 16: 109116.CrossRefGoogle Scholar
Muellner, A. N., Savolainen, V., Samuel, R. & Chase, M. W. (2006). The mahogany family “Out-of-Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molec. Phylogenet. Evol. 40: 236250.Google Scholar
Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
Oliver, D. (1868). Flora of Tropical Africa, vol. 6. London: L. Reeve.Google Scholar
Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 255: 3745.Google Scholar
Pennington, R. T. & Dick, C. W. (2004). The role of immigrants in the assembly of the South American rainforest tree flora. Philos. Trans., Ser. B 359: 16111622.Google Scholar
Rambaut, A. (2002). Se-Al: Sequence Alignment Editor: http://evolve.zoo.ox.ac.ukGoogle Scholar
Rambaut, A. & Drummond, A. J. (2007). Tracer v1.4: http://beast.bio.ed.ac.uk/TracerGoogle Scholar
Raunkiaer, C. (1934). The life-forms of plants and statistical plant geography. Oxford: Oxford University Press.Google Scholar
Raven, P. H. & Axelrod, D. I. (1974). Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539673.Google Scholar
Ree, R. H. & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57: 414.CrossRefGoogle ScholarPubMed
Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 22992311.Google Scholar
Renner, S. S. (2004). Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Pl. Sci. 165: S23S33.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Sakai, S. (2001). Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Amer. J. Bot. 88: 15271534.Google Scholar
Sakai, S., Kato, M. & Nagamasu, H. (2000). Artocarpus (Moraceae)–gall midge pollination mutualism mediated by a male-flower parasitic fungus. Amer. J. Bot. 87: 440445.Google Scholar
Shaw, J., Lickey, E. B., Schilling, E. E. & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer. J. Bot. 94: 275288.CrossRefGoogle ScholarPubMed
Simmons, M. P. (2004). Independence of alignment and tree search. Molec. Phylogenet. Evol. 31: 874879.Google Scholar
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57: 758771.Google Scholar
Swofford, D. L. (2003). PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, MA: Sinauer Associates.Google Scholar
Tiffney, B. H. (1985). Perspectives on the origin of the floristic similarity between Eastern Asia and eastern North America. J. Arnold Arbor. 66: 7394.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (eds) PCR Protocols: A Guide to Methods and Applications, pp. 315322. New York: Academic Press, Inc.Google Scholar
Yang, Z. & Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Molec. Biol. Evol. 14: 717724.Google Scholar
Zerega, N. J. C., Mound, L. A. & Weiblen, G. D. (2004). Pollination in the New Guinea endemic Antiaropsis decipiens (Moraceae) is mediated by a new species of thrips, Thrips antiaropsidis (Thysanoptera: Thripidae). Int. J. Pl. Sci. 165: 10171026.Google Scholar
Zerega, N. J. C., Clement, W. L., Datwyler, S. L. & Weiblen, G. D. (2005). Biogeography and divergence times in the mulberry family (Moraceae). Molec. Phylogenet. Evol. 37(2): 402416.Google Scholar
Zohary, M. (1966). Flora Palaestina 1: 3738. Jerusalem: The Israel Academy of Sciences and Humanities.Google Scholar