Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T04:48:17.576Z Has data issue: false hasContentIssue false

Cytological observations in Albuca, including a survey of polymorphic variation in the Sat-chromosome pair

Published online by Cambridge University Press:  26 April 2010

Get access

Abstract

Chromosome numbers for 14 South African species of Albuca L. (Liliaceae) have been determined. Ten of these are first reports, including counts for three new species. Members of all three sections of the genus are represented in this study, and all have a diploid number of 2n = 18. No polyploids or dysploids were encountered in this survey. There is no evidence that the sectional subdivisions of Albuca can be readily distinguished on differences in basic chromosome number or karyotype, for all taxa are characterized by a common basic number of x = 9 and by a remarkably uniform, strongly asymmetric and bimodal complement of three long chromosomes and six markedly shorter ones. Special attention is focused on the hitherto largely overlooked variability of the longest chromosome pair which, in a large proportion of the species examined, shows heterozygous variation in the size, morphology and stainability of its satellite and in some cases, also in the short chromosome arm that bears it. This unusually high incidence of polymorphism, and the diversity of form observed in this satellited (Sat-chromosome) pair is discussed in relation to similar patterns reported elsewhere.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, J. G. (1873). Revision of the genera and species of Scilleae and Chlorogaleae. Journal of the Linnean Society (Botany) 13: 209–92.CrossRefGoogle Scholar
Baker, J. G. (1896). Liliaceae. pp. 451462. In Thiselton-Dyer, W. T. (ed.) Flora Capensis vol.VI. London.Google Scholar
Baker, J. G. (1898). Liliaceae. pp. 528535. In Thiselton-Dyer, W. T. (ed.) Flora of Tropical Africa vol.VII, 1897–1898. London.Google Scholar
Bennett, M. D. (1982). Nucleotypic basis of the spatial ordering of chromosomes of eukaryotes and the implications of the order for genome evolution and phenotypic variation, pp. 239261. In Dover, G. A. & Flavell, R. B. (eds) Genome Evolution. The Systematics Association Special Volume no. 20. London.Google Scholar
Bentzer, B. (1972). Structural chromosome polymorphism in diploid Leopoldia weisii (Freyn) Freyn ex Heldr. (Liliaceae). Botaniska Notiser 125: 406418.Google Scholar
Bohkhovskikh, Z., Matvejeva, G. T. & Zakharyeva, O. (1969). Chromosome Numbers of Flowering Plants. Izdalelorstvo, ‘Nauka’, Leningrad.Google Scholar
Brandham, P. E. (1974). Interchange and inversion polymorphism among populations of Haworthia reinwardtii var. chalumnensis. Chromosoma 47: 85108.CrossRefGoogle Scholar
Brandham, P. E. (1983). Evolution in a stable chromosome system, pp. 251260. In Brandham, P. E. & Bennett, M.-D. (eds) Kew Chromosome Conference II. London.Google Scholar
Brandham, P. E. & Johnson, M. A. T. (1977). Population cytology of structural and numerical variants in the Aloineae (Liliaceae). Plant Systematics & Evolution 128: 105122.CrossRefGoogle Scholar
Brighton, C. A. (1977a). Cytology of Crocus sativus and its allies (Iridaceae). Plant Systematics & Evolution 128: 137157.CrossRefGoogle Scholar
Brighton, C. A. (1977b). Cytological problems in the genus Crocus (Iridaceae) I. Crocus vernus aggregate. Kew Bulletin 31: 3346.CrossRefGoogle Scholar
Brighton, C. A. (1977c). Cytological problems in the genus Crocus (Iridaceae) II. Crocus cancellatus aggregate. Kew Bulletin 32: 3345.CrossRefGoogle Scholar
Brighton, C. A., Mathew, B. & Marchant, C. J. (1973). Chromosome counts in the genus Crocus. Kew Bulletin 28: 451464.CrossRefGoogle Scholar
Conger, A. D. & Fairchild, L. M. (1953). A quick-freeze method for making smear slides permanent. Stain Technology 28: 281283.CrossRefGoogle ScholarPubMed
Cullen, J. & Ratter, J. A. (1966). Taxonomic and cytological notes on Turkish Ornithogalum. Notes from the Royal Botanic Garden Edinburgh 27: 293339.Google Scholar
De Wet, J. M. J. (1957). Chromosome numbers in the Scilleae. Cytologia 22: 145159.CrossRefGoogle Scholar
Dobzhansky, T. (1951). Genetics and the Origin of Species. New York.Google Scholar
Dyer, A. F. (1963a). The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Technology 38: 8590.CrossRefGoogle Scholar
Dyer, A. F. (1963b). Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. Chromosoma 13: 545576.CrossRefGoogle Scholar
Dyer, A. F. (1979). Investigating Chromosomes. 138pp. London.Google Scholar
Fernandes, A. & Neves, J. B. (1962). Sur la caryologie de quelques Monocotylédones Africaines. Comptes Rendus IVe Réunion Aetfat. 1961, pp.439463. Lisboa, 1960.Google Scholar
Fluellen, B. L. (1974). Studies in the Genus Albuca L. Unpublished PhD Thesis, Bristol University.Google Scholar
Fox, D. P. (1969). Some characteristics of the cold hydrolysis technique for staining plant tissues by the Feulgen reaction. Journal of Histochemistry and Cytochemistry 17: 266272.CrossRefGoogle ScholarPubMed
Gill, L. S. & Abubakar, A. M. (1975). In: IOPB Chromosome number reports. XLVIII. Taxon 24: 367372.Google Scholar
Gledhill, D. & Oyewole, S. O. (1972). The taxonomy of Albuca in West Africa. Boletim da Sociedade Broteriana, 2nd Serie 46: 93106.Google Scholar
Hilliard, O. M. & Burtt, B. L. (1985). Notes on some plants of Southern Africa chiefly from Natal: XI. Notes from the Royal Botanic Garden Edinburgh 42: 227260.Google Scholar
Jones, K. (1978). Aspects of chromosome evolution in plants. In Woolhouse, H. W. (ed.) Advances in Botanical Research 16: 199–194.Google Scholar
Jones, K. & Smith, J. B. (1967). The chromosomes of the Liliaceae. I. The karyotypes of twenty-five tropical species. Kew Bulletin 21: 3138.CrossRefGoogle Scholar
John, B. & Lewis, K. R. (1968). The Chromosome Complement. Protoplasmatalogia VI A. pp. 1208. Wien.Google Scholar
Knudtzon, S. H. & Stedje, B. (1986). Taxonomy and cytology of the genus Albuca (Hyacinthaceae) in East Africa. Nordic Journal of Botany 6: 773786.CrossRefGoogle Scholar
Krause, K. (1930). Liliaceae. pp. 227386. In Die Natürlichen Pflanzenfamilien. 2 Aufl. Band 15a.Google Scholar
Levan, A., Fredga, K. & Sanberg, A. A. (1964). Nomenclature for the centromeric position on chromosomes. Hereditas 52: 201220.CrossRefGoogle Scholar
Nordenstam, B. (1969). Chromosome studies on South African vascular plants. Botaniska Notiser 122: 398408.Google Scholar
Oyewole, S. O. (1972). Cytological and cytogenetic studies in the genus Albuca L. in West Africa. Boletim da Sociedade Broteriana, 2nd Serie 46: 149170.Google Scholar
Satô, D. (1942). Karyotype alteration and phylogeny in Liliaceae and allied families. Japanese Journal of Botany 12: 57161.Google Scholar
Saylor, L. C. & Smith, B. W. (1966). Meiotic irregularity in species and interspecific hybrids in Pinus. American Journal of Botany 53: 453468.CrossRefGoogle Scholar
Sinotô, Y. & Satô, D. (1940). Basikaryotype and its analysis. Cytologia 10: 529538.CrossRefGoogle Scholar
Vedbrat, S. (1965). Genetic systems in Allium. I. Chromosome variation. Chromosoma (Berlin) 16: 486499.CrossRefGoogle Scholar
Vosa, C. G. (1966a). Chromosome variation in Tulbaghia. Heredity 21: 305312.CrossRefGoogle ScholarPubMed
Vosa, C. G. (1966b). Tulbaghia hybrids. Heredity 21: 675687CrossRefGoogle Scholar
Zakhariyeva, O. I. & Makushenko, L. M. (1969). Chromosome numbers of monocotyledons belonging to the families Liliaceae, Iridaceae, Amaryllidaceae, Araceae. Botanisheskii Zhurnal 54: 12131227.Google Scholar