Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T00:32:38.244Z Has data issue: false hasContentIssue false

NEW CHROMOSOME COUNTS IN OLD WORLD GESNERIACEAE: NUMBERS FOR SPECIES HITHERTO REGARDED AS CHIRITA, AND THEIR SYSTEMATIC AND EVOLUTIONARY SIGNIFICANCE

Published online by Cambridge University Press:  18 June 2012

F. Christie
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: [email protected]
S. Barber
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: [email protected]
M. Möller
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: [email protected]
Get access

Abstract

Chromosome numbers were determined in 23 accessions representing 21 species hitherto belonging to Chirita (Gesneriaceae), a genus that has recently been remodelled and split into five different genera: Damrongia, Henckelia, Liebigia, Microchirita and Primulina. The previously monotypic Primulina tabacum was also investigated. Counts for 19 species were new, two were confirmatory and two gave different numbers from previously published counts. The results here, together with previously published cytological data for the erstwhile genus Chirita, were analysed in the light of the taxonomic revision of the genus and published phylogenetic data. Chirita was originally highly heterogeneous in chromosome numbers, including seven different somatic numbers, 2n = 8, 18, 20, 28, 32, 34 and 36. Among the five remodelled genera, Henckelia was found to be as equally heterogeneous as the erstwhile Chirita, Microchirita included only two chromosome numbers, 2n = 18 and 34, the three species of Damrongia were uniform with 2n = 18, while species belonging to the extended Primulina showed only one basic number, x = 18, with 15 samples being diploid, and one being tetraploid. In the light of recent phylogenetic studies, polyploid as well as dysploid changes appear to have shaped the genomes of the newly defined genera Henckelia, Microchirita and, to a lesser degree, Primulina.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, L. M., Cao, M., Tang, X. L. & Wei, Y. G. (2003). Chromosome numbers of 4 species in the Gesneriaceae from Guangxi. Guihaia 23(4): 331333.Google Scholar
Conger, A. D. & Fairchild, L. M. (1953). A quick-freeze method for making smear slides permanent. Stain Tech. 28: 281283.Google Scholar
Fox, D. P. (1969). Some characteristics of the cold hydrolysis technique for staining plant tissues by the Feulgen reaction. J. Histo. Cytochem. 17: 226.Google Scholar
Fussell, C. P. (1958). Chromosome numbers in the Gesneriaceae. Baileya 6: 117125.Google Scholar
Gregory, T. R. (2005). The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95: 133146.Google Scholar
Hair, T. B. & Beuzenberg, E. J. (1958). Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hellmayr, E. (1989). Chromosomenzählungen an Blütenpflanzen der Malaiischen Halbinsel. 5. Österreichisches Botanikertreffen in Innsbruck 25.–28. Mai 1989. Innsbruck.Google Scholar
John, B. & Freeman, M. (1975). Causes and consequences of Robertsonian exchange. Chromosoma 52: 123136.CrossRefGoogle ScholarPubMed
Jones, K. (1974). Chromosome evolution by Robertsonian translocation in Gibasis (Commelinaceae). Chromosoma 45: 353368.Google Scholar
Jong, K. (1997). A Laboratory Manual of Cytological Techniques. Edinburgh: Royal Botanic Garden Edinburgh.Google Scholar
Jong, K. & Möller, M. (2000). New chromosome counts in Streptocarpus (Gesneriaceae) from Madagascar and the Comoro Islands and their taxonomic significance. Pl. Syst. Evol. 224: 173182.CrossRefGoogle Scholar
Kasai, F., Takahashi, E. I., Koyama, K., Terao, K., Suto, Y., Tokunaga, K. et al. . (2000). Comparative FISH mapping of the ancestral fusion point of human chromosome 2. Chromosome Res. 8: 727735.Google Scholar
Kiehn, M. & Lorence, D. H. (1996). Chromosome counts on angiosperms cultivated at the National Tropical Botanical Garden, Kaua’i, Hawai’i. Pacific Sci. 50: 317323.Google Scholar
Kiehn, M., Hellmayr, E. & Weber, A. (1998). Chromosome numbers of Malayan and other paleotropical Gesneriaceae. I. Tribe Didymocarpeae. Beitr. Biol. Pflanzen 70: 407444.Google Scholar
Kiew, R. & Lim, C. L. (2011). Names and new combinations for Peninsular Malaysian species of Codonoboea Ridl. (Gesneriaceae). Gard. Bull. Singapore 62(2): 253275.Google Scholar
Lee, R. E. (1962). Chromosome numbers in the Gesneriaceae. Baileya 10: 3345.Google Scholar
Leitch, I. J., Soltis, D. E., Soltis, P. S. & Bennett, M. D. (2005). Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95: 207217.Google Scholar
Lu, Y. X., Sun, X. F., Zhou, Q. X. & Gu, Z. J. (2002). Chromosome numbers in ten species in the Gesneriaceae from Yunnan. Acta Bot. Yunnan. 24: 377382.Google Scholar
Milne, C. (1975). Chromosome numbers in the Gesneriaceae: V. Notes Roy. Bot. Gard. Edinburgh 33: 523525.Google Scholar
Möller, M. & Kiehn, M. (2003). A synopsis of cytological studies in Gesneriaceae. Edinburgh J. Bot. 60(3): 425447.Google Scholar
Möller, M., Pullan, M., Kiehn, M. & Skog, L. E. (2002 onwards). RBGE WebCyte – Gesneriaceae cytology database. http://elmer.rbge.org.uk/webcyte/webcyte.phpGoogle Scholar
Möller, M., Pfosser, M., Jang, C. G., Mayer, V., Clark, A., Hollingsworth, M. L. et al. . (2009). A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: Incongruence with available tribal classifications. Amer. J. Bot. 96: 9891010.Google Scholar
Möller, M., Forrest, A., Wie, Y. G. & Weber, A. (2011). A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on non-monophyletic and monotypic genera. Pl. Syst. Evol. 292: 223248.CrossRefGoogle Scholar
Ratter, J. A. (1963). Some chromosome numbers in the Gesneriaceae. Notes Roy. Bot. Gard. Edinburgh 24: 221229.Google Scholar
Ratter, J. A. & Milne, C. (1970). Chromosome numbers in the Gesneriaceae: IV. Notes Roy. Bot. Gard. Edinburgh 30: 183187.Google Scholar
Ratter, J. A. & Prentice, H. T. (1964). Chromosome numbers in the Gesneriaceae: II. Notes Roy. Bot. Gard. Edinburgh 25: 303307.Google Scholar
Ratter, J. A. & Prentice, H. T. (1967). Chromosome numbers in the Gesneriaceae: III. Notes Roy. Bot. Gard. Edinburgh 27: 205209.Google Scholar
Rogers, O. M. (1954). Some chromosome counts in the Gesneriaceae. Baileya 2: 1418.Google Scholar
Siljak-Yakovlev, S., Stevanovic, V., Tomasevic, M., Brown, S. C. & Stevanovic, B. (2008). Genome size variation and polyploidy in the resurrection plant genus Ramonda: Cytogeography of living fossils. Environ. Exp. Bot. 62: 101112.CrossRefGoogle Scholar
Sugiura, T. (1938). A list of chromosome numbers in angiospermous plants V. Proc. Imp. Acad. (Tokyo) 14: 391392.Google Scholar
Sugiura, T. (1940). Studies on the chromosome numbers in higher plants. V. Cytologia 10: 363370.CrossRefGoogle Scholar
Thathachar, T. (1942). Studies in Gesneriaceae, gametogenesis and embryogeny of Didymocarpus tomentosa Wt. J. Indian Bot. Soc. 21: 185193.Google Scholar
Vasudevan, K. N. (1976). Contribution to the cytotaxonomy and cytogeography of the flora of the western Himalayas (with an attempt to compare it with the flora of the Alps). Part III. Ber. Schweiz. Bot. Ges. 86: 152203.Google Scholar
Wang, W. T. (1985a). A revision of the genus Chirita in China (I). Bull. Bot. Res., Harbin 5(2): 7197.Google Scholar
Wang, W. T. (1985b). A revision of the genus Chirita in China (II). Bull. Bot. Res., Harbin 5(3): 3786.Google Scholar
Wang, Y. Z., Mao, R. B., Liu, Y., Li, J. M., Dong, Y., Li, Z. Y. et al. . (2011). Phylogenetic reconstruction of Chirita and allies (Gesneriaceae) with taxonomic treatments. J. Syst. Evol. 49: 5064.Google Scholar
Weber, A. (2004). Gesneriaceae. In: Kubitzki, K. (ed.) The Families and Genera of Vascular Plants, vol. VII: Dicotyledons – Lamiales (except Acanthaceae including Avicenniaceae) (vol. ed. Kadereit, J. W.), pp. 63158. Berlin & Heidelberg: Springer.Google Scholar
Weber, A. & Burtt, B. L. (1998). Remodelling of Didymocarpus and associated genera (Gesneriaceae). Beitr. Biol. Pflanzen 70: 293363.Google Scholar
Weber, A., Middleton, D. J., Forrest, A., Kiew, R., Lim, C. L., Rafidah, A. R. et al. . (2011). Molecular systematics and remodelling of Chirita and associated genera (Gesneriaceae). Taxon 60: 767790.CrossRefGoogle Scholar
Wood, D. (1974). A revision of Chirita (Gesneriaceae). Notes Roy. Bot. Gard. Edinburgh 33: 123205.Google Scholar
Zhou, P., Gu, Z. J. & Möller, M. (2004). New chromosome counts and nuclear characteristics for some members of Gesneriaceae subfamily Cyrtandroideae from China and Vietnam. Edinburgh J. Bot. 60: 449466.CrossRefGoogle Scholar