Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T05:13:07.990Z Has data issue: false hasContentIssue false

THE INFLUENCE OF SOILS ON THE FLORISTIC COMPOSITION AND COMMUNITY STRUCTURE OF AN AREA OF BRAZILIAN CERRADO VEGETATION

Published online by Cambridge University Press:  16 February 2012

A. V. Neri
Affiliation:
Federal University of Viçosa, Plant Biology Department, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil. E-mail for correspondence: [email protected]
C. E. G. R. Schaefer
Affiliation:
Federal University of Viçosa, Department of Soil, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil.
A. F. Silva*
Affiliation:
Federal University of Viçosa, Plant Biology Department, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil. E-mail for correspondence: [email protected]
A. L. Souza
Affiliation:
Federal University of Viçosa, Forest Engineer Department, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil.
W. G. Ferreira-Junior
Affiliation:
Federal University of Viçosa, Plant Biology Department, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil. E-mail for correspondence: [email protected]
J. A. A. Meira-Neto
Affiliation:
Federal University of Viçosa, Plant Biology Department, P.H. Rolfs, s/n, 36570-000, Viçosa, MG, Brazil. E-mail for correspondence: [email protected]
*
In memoriam.
Get access

Abstract

This study investigated the influence of soil factors on the structure, richness and distribution of woody Cerrado species within the National Forest of Paraopeba, Minas Gerais State, Brazil. Individuals with basal stem circumference ≥ 10 cm were sampled in five plots of 20 × 100 m. The study was conducted in five environments with different physiognomies and types of soils. A total of 132 species were recorded. The species with the greatest importance values varied between different areas, as did structure. Canonical correspondence analysis ordination showed three different groups closely related to soil fertility and Al levels. These relations were also confirmed by Pearson’s correlation where richness was positively related to pH, K, Ca, Mg and P and negatively to Al. The basal area was positively correlated with levels of P, Mg, Ca and T (base saturation) and negatively with Al, also using Pearson’s correlation. Likewise, density was positively correlated with Mg and negatively with Al. The analysis shows that soil fertility and the concentration of Al are two of the most important factors responsible for structural and floristic variation and for differentiating dystrophic and mesotrophic Cerradão.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APG II [Angiosperm Phylogeny Group II] (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399436.CrossRefGoogle Scholar
Cientec (2002). Software Mata Nativa 2.0: Sistema para Análise Fitossociológica, Elaboração de Inventários e Planos de Manejo de Florestas Nativas. Viçosa – MG: Cientec.Google Scholar
Cole, M. M. (1986). The Savannas: Biogeography and Geobotany. London: Academic Press.Google Scholar
Costa, A. A. & Araújo, G. M. (2001). Comparação da vegetação arbórea de cerradão e de cerrado na Reserva do Panga, Uberlândia, Minas Gerais. Acta Bot. Brasil. 15: 6372.CrossRefGoogle Scholar
Eiten, G. (1972). The cerrado vegetation of Brazil. Bot. Rev. 38: 201341.CrossRefGoogle Scholar
EMBRAPA [Empresa Brasileira de Pesquisa Agropecuária] (1997). Manual de métodos de análises de solo. Rio de Janeiro: Ministério da Agricultura e do Abastecimento.Google Scholar
Felfili, J. M. & Silva-Júnior, M. C. (2001). Biogeografia do Bioma Cerrado: estudo fitofisionômico da Chapada do Espigão Mestre do São Francisco. Brasília: UNB.Google Scholar
Furley, P. A. (1999). The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecol. Biogeogr. 8: 223241.CrossRefGoogle Scholar
Furley, P. A. & Ratter, J. A. (1988). Soil resources and plant communities of the central Brazilian cerrado and their development. J. Biogeogr. 15: 97108.CrossRefGoogle Scholar
Goodland, R. (1969). Análise ecológica da vegetação de cerrado. In: Goodland, R. & Ferri, M. G., Ecologia do cerrado, pp. 61161. Belo Horizonte, Itatiaia and São Paulo: EDUSP.Google Scholar
Goodland, R. (1971). Oligotrofismo e alumínio no cerrado. In: Ferri, M. G. (ed.) III Simpósio sobre cerrado, pp. 4460. São Paulo: EDUSP.Google Scholar
Goodland, R. & Pollard, R. (1973). The Brazilian cerrado vegetation: a fertility gradient. J. Ecol. 61: 219224.CrossRefGoogle Scholar
Haridasan, M. (1982). Aluminium accumulation by some cerrado native species of Central Brazil. Plant and Soil 65: 265273.CrossRefGoogle Scholar
Haridasan, M. (2000). Nutrição mineral de plantas nativas do cerrado. Revista Brasil. Fisiol. Vegetal 12: 5464.Google Scholar
Haridasan, M. & Araújo, G. M. (1988). Aluminium-accumulating species in two forest communities in the cerrado region of central Brazil. Forest Ecol. Manag. 24: 1526.CrossRefGoogle Scholar
IBGE [Instituto Brasileiro de Geografia e Estatística] (2007). Mapa de Climas (http://mapas.ibge.gov.br/clima/viewer.htm; accessed 24 January 2007).Google Scholar
Lopes, A. S. & Cox, F. R. (1977). Cerrado vegetation in Brazil: an edaphic gradient. Agronom. J. 69: 828831.CrossRefGoogle Scholar
McCune, B. & Mefford, M. J. (1997). PC-ORD: Multivariate Analysis of Ecological Data, version 3.0. Gleneden Beach, OR: MjM Software Design.Google Scholar
Méio, B. B., Freitas, C. V., Jatobá, L., Silva, M. E. F., Ribeiro, J. F. & Henriques, R. (2003). Influência da flora das florestas Amazônica e Atlântica na vegetação de cerrado. Revista Brasil. Bot. 26: 437444.Google Scholar
Mueller-Dombois, D. Y. & Ellenberg, M. (1974). Aims and Methods in Vegetation Ecology. New York: Wiley & Sons.Google Scholar
Neri, A. V. (2007). Gradiente pedológico–vegetacional de Cerrado em Paraopeba, MG. DSc thesis, Universidade Federal de Viçosa, Viçosa.Google Scholar
Neri, A. V., Campos, E. P., Duarte, T. G., Meira Neto, J. A. A., Silva, A. F. & Valente, G. E. (2005). Regeneração de espécies nativas lenhosas sob plantio de Eucalyptus em área de Cerrado na Floresta Nacional de Paraopeba, MG, Brasil. Acta Bot. Brasil. 19: 369376.CrossRefGoogle Scholar
Oliveira-Filho, A. T. & Martins, F. R. (1991). A comparative study of five cerrado areas in southern Mato Grosso, Brazil. Edinburgh J. Bot. 48: 307322.CrossRefGoogle Scholar
Oliveira-Filho, A. T. & Ratter, J. A. (1995). A study of the origin of Central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh J. Bot. 52: 141194.CrossRefGoogle Scholar
Oliveira-Filho, A. T. & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira, P. S. & Marquis, R. J. (eds) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, pp. 91121. New York: Columbia University Press.CrossRefGoogle Scholar
Oliveira-Filho, A. T., Shepherd, G. J., Martins, F. R. & Stubblebine, W. H. (1989). Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. J. Trop. Ecol. 5: 413431.CrossRefGoogle Scholar
Ratter, J. A. (1971). Some notes on two types of Cerradão occurring in North Eastern Mato Grosso. In: Ferri, M. G. (Co-ord.) III Simpósio Sobre o Cerrado, pp. 100102. Brazil: Universidade de São Paulo.Google Scholar
Ratter, J. A. (1992). Transitions between cerrado and forest vegetation in Brazil. In: Furley, P. A., Proctor, J. & Ratter, J. A. (eds) Nature and Dynamics of Forest–Savanna Boundaries, pp. 5176. London: Chapman & Hall.Google Scholar
Ratter, J. A., Richards, P. W., Argent, G. & Gifford, D. R. (1973). Observations on the vegetation of northeastern Mato Grosso I. The woody vegetation types of the Xavantina–Cachimbo Expedition area. Philos. Trans., Ser. B 266: 449492.Google Scholar
Ratter, J. A., Askew, G. P., Montgomery, R. F. & Gifford, D. R. (1977). Observações adicionais sobre o cerradão de solos mesotróficos no Brasil Central. In: Ferri, M. G. (Co-ord.) IV Simpósio sobre o Cerrado, pp. 303316. São Paulo, Brazil: Ed. Universidade de São Paulo.Google Scholar
Ratter, J. A., Askew, G. P., Montgomery, R. F. & Gifford, D. R. (1978). Observations on forest of some mesotrophic soils in Central Brazil. Revista Brasil. Bot. 1: 4758.Google Scholar
Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. (1997). The Brazilian Cerrado vegetation and threats to its biodiversity. Ann. Bot. 80: 223230.CrossRefGoogle Scholar
Ratter, J. A., Bridgewater, S., Ribeiro, J. F., Fonsêca-Filho, J., Rodrigues da Silva, M., Milliken, W. et al. . (2011). Analysis of the Floristic Composition of the Brazilian Cerrado IV: Presentation of a Revised Database of 367 Areas (http://cerrado.rbge.org.uk).Google Scholar
Ribeiro, J. F. & Haridasan, M. (1990). Comparação fitossociológica de um cerrado e um cerradão em solos distróficos no Distrito Federal. In: Congresso Nacional de Botânica, 35, pp. 342353. 1984, Manaus. Anais. Brasília: IBAMA.Google Scholar
Ribeiro, J. F., Silva, J. C. S. & Batmanian, G. J. (1985). Fitossociologia de tipos de cerrado em Planaltina-DF. Revista Brasil. Bot. 8: 131142.Google Scholar
Rizzini, C. T. (1992). Tratado de fitogeografia do Brasil, 2nd edition. Rio de Janeiro: Âmbito Cultural.Google Scholar
Rosot, N. C., Amaral-Machado, S. & Figueiredo Filho, A. (1982). Análise estrutural de uma floresta tropical como subsídio básico para elaboração de um plano de manejo florestal. V. 16 P. 1. In: Anais do Congresso Nacional Sobre Essências Nativas, pp. 468490. Campos do Jordão, Silvicultura em São Paulo – Instituto Florestal.Google Scholar
Ruggiero, P. G. C., Batalha, M. A., Pivello, V. R. & Meireles, S. T. (2002). Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160: 116.CrossRefGoogle Scholar
Silva-Júnior, M. C. (1984). Composição florística, estrutura e parâmetros fitossociológicos do cerrado e sua relação com o solo na Estação Florestal de Experimentação de Paraopeba-MG. Masters thesis, Universidade Federal de Viçosa, Viçosa, Brazil.Google Scholar
Silva-Júnior, M. C. (1987). Relações entre parametros do solo e da vegetação de cerrado na Estação Florestal de Experimentação de Paraopeba, MG. Revista Brasil. Bot. 10: 125137.Google Scholar
SNUC [Sistema Nacional de Unidades de Conservação da Natureza] (2000). Lei N° 9.985, de 18 de julho de 2000. MMA/SBF.Google Scholar
Souza, V. C. & Lorenzi, H. (2005). Botânica Sistemática guia ilustrado para identificação das Famílias de Angiosermas da flora brasileira, baseado em APG II. Nova Odesa: Instituto Plantarum.Google Scholar
Vanzolini, P. E. (1963). Problemas faunísticos do cerrado. In: Ferri, M. G. (ed.) Simpósio sobre o Cerrado, pp. 211232. São Paulo: Ed. Universidade de São Paulo.Google Scholar