Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T09:19:14.943Z Has data issue: false hasContentIssue false

DISTRIBUTION PATTERNS AND AREAS OF ENDEMISM OF BRAZILIAN JACQUEMONTIA (CONVOLVULACEAE) SPECIES

Published online by Cambridge University Press:  11 December 2014

M. T. Buril
Affiliation:
Área de Botânica, Departamento de Biologia, Universidade Federal Rural de Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, Pernambuco, Brazil. E-mail for correspondence: [email protected]
J. R. Maciel
Affiliation:
Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 51930-670, Recife, Pernambuco, Brazil.
M. Alves
Affiliation:
Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 51930-670, Recife, Pernambuco, Brazil.
Get access

Abstract

This study aims to understand the distribution of species of Jacquemontia (Convolvulaceae) in Brazil and to determine the centre of endemism of the genus in that country. A database of around 2000 records of samples deposited in 46 herbaria was created. Twenty-one species were classified as widely distributed, of which 14 have continuous distributions and seven have disjunct ones. The remaining 26 species were classified as restricted and among these, 14 were considered endemic and 12 microendemic. The centre of endemism of the genus is in the Espinhaço Range, which traverses Bahia and Minas Gerais. The distribution patterns are discussed and a new assessment for the Red List of Jacquemontia is suggested.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade-Lima, D. (1981). The caatinga dominium. Rev. Brasil. Bot. 4: 149153.Google Scholar
Austin, D. F. (1992). Rare Convolvulaceae in the Southwestern United States. Ann. Missouri Bot. Gard. 78(1): 816.CrossRefGoogle Scholar
Behling, H. & Lichte, M. (1997). Evidence of dry and cold climatic conditions at glacial times in tropical Southeastern Brazil. Quaternary Res. 48: 348358.Google Scholar
Bianchini, R. (1999). Jacquemontia revoluta (Convolvulaceae), a new species from Minas Gerais, Brazil. Taxon 9: 104106.Google Scholar
Bianchini, R. S. & Ferreira, P. P. A. (2012). Convolvulaceae. In: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/2012/.Google Scholar
Bianchini, R. & Pirani, J. R. (2005). Duas novas espécies de Convolvulaceae de Minas Gerais, Brasil. Hoehnea 32(2): 295300.Google Scholar
Buril, M. T. (2013). Sistemática e filogenia de Jacquemontia Choisy (Convolvulaceae). PhD thesis, Universidade Federal de Pernambuco, Recife.Google Scholar
Buril, M. T. & Alves, M. (2011). A new species of Jacquemontia (Convolvulaceae) from northeastern Brazil. Brittonia 63(4): 436441.Google Scholar
Buril, M. T. & Alves, M. (2012a). Two new species of Jacquemontia Choisy (Convolvulaceae) endemic to Bahia, Brazil. Phytotaxa 69: 2732.CrossRefGoogle Scholar
Buril, M. T. & Alves, M. (2012b). Jacquemontia macrocalyx (Convolvulaceae), a new species endemic to the Espinhaço Range, Brazil. Novon 22(2): 137140.Google Scholar
Buril, M. T., Simão-Bianchini, R. & Alves, M. (2012). Jacquemontia robertsoniana (Convolvulaceae), a new shrub species from Brazil. Kew Bull. 63(3): 15.Google Scholar
Burman, A. (1991). Saving Brazil’s savannas. New Sci. 1758: 3034.Google Scholar
Caetano, S., Prado, D., Pennington, R. T., Beck, S., Oliveira-Filho, A., Spichiger, R. & Naciri, Y. (2008). The history of Seasonally Dry Tropical Forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Molec. Ecol. 17(13): 31473159.Google Scholar
Chiron, G. R. (2009). Riqueza e endemismo de espécies de Baptistonia (Orchidaceae), no Brasil. Hoehnea 36(3): 459477.Google Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Fiaschi, P. & Pirani, J. R. (2008). Padrões de distribuição geográfica das espécies de Schefflera J. R. Forst. & G. Forst (Araliaceae) do Brasil extra-amazônico. Rev. Brasil. Bot. 31(4): 633644.Google Scholar
Gentry, A. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 69: 557593.Google Scholar
Giulietti, A. M. & Pirani, J. R. (1988). Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini, P. E. & Heyer, W. R. (eds) Proceedings of a Workshop on Neotropical Distribution Patterns, pp. 3969. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Giulietti, A. M., Pirani, J. R. & Harley, R. M. (1997). Espinhaço range region. Eastern Brazil. In: Davis, S. D., Heywood, V. H., Herrera-MacBryde, O., Villa-Lobos, J. & Hamilton, A. C. (eds) Centres of Plant Diversity: A Guide and Strategies for Their Conservation. Vol. 3: The Americas, pp. 397404. Cambridge: WWF/IUCN.Google Scholar
Grazziotin, F. G., Monzel, M., Echeverrigaray, S. & Bonatto, S. L. (2006). Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonisation in the Brazilian Atlantic Forest. Molec. Ecol. 15: 39693982.Google Scholar
Greller, A. (2000). Vegetation in the floristic regions of North and Central America. In: Lentz, D. (org.) Imperfect Balance: Landscape Transformations in the Precolumbian Americas, pp. 3987. New York: Columbia University Press.CrossRefGoogle Scholar
Harley, R. M. (1988). Evolution and distribution of Eriope (Labiatae) and its relatives in Brazil. In: Vanzolini, P. E. & Heyer, W. R. (eds) Proceedings of a Workshop on Neotropical Distribution Patterns, pp. 71120. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Hijmans, R. J. & Spooner, D. M. (2001). Geographic distribution of wild potato species. Amer. J. Bot. 88: 21012112.Google Scholar
Hijmans, R. J., Cruz, M., Rojas, E. & Guarino, L. (2001). DIVA-GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Manual. Lima: International Potato Center and International Plant Genetic Resources Institute.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 19651978.CrossRefGoogle Scholar
Kamino, L. H. Y., Oliveira-Filho, A. T. & Stehmann, J. R. (2009). Relações florísticas entre as fitofisionomias florestais da Cadeia do Espinhaço, Brasil. Megadiversidade 4(12): 3949.Google Scholar
Krapovickas, A. (2009). Novedades en Convolvuláceas argentinas. Bonplandia 18(1): 5764.Google Scholar
Maciel, J. R., Oliveira, R. C. & Alves, M. (2009). Padrões de distribuição de Paspalum L. (Poaceae) em Pernambuco. Rev. Brasil. Bot. 32: 597605.Google Scholar
Marchioretto, M. S., Miotto, S. T. S. & Siqueira, J. C. (2009). Padrões de distribuição geográfica das espécies brasileiras de Pfaffia (Amaranthaceae). Rodriguesia 60(3): 667681.Google Scholar
McCauley, R. A., Cortés-Palomec, A. C. & Oyama, K. (2010). Distribution, genetic structure, and conservation status of the rare microendemic species Guaiacum unijugum (Zygophyllaceae) in the Cape Region of Baja California, Mexico. Rev. Mex. Bio. 81: 745758.Google Scholar
Melo, J. I. M., Alves, M. & Semir, J. (2009). Padrões de distribuição geográfica das espécies de Euploca e Heliotropium (Heliotropiaceae) no Brasil. Rodriguesia 60(4): 10251036.Google Scholar
Meisner, C. F. (1869). Convolvulaceae. In: Martius, C. P. F. & Eichler, A. G. (eds) Flora Brasiliensis 7: 199370.Google Scholar
MMA – Ministério do Meio Ambiente (2008). Instrução Normativa – Lista de oficial das espécies da flora brasileira ameaçadas de extinção. Brasília, DF.Google Scholar
Namoff, S., Thornton, H. E. B., Lewis, C. E., Oviedo, R. & Francisco-Ortega, J. (2007). Molecular evidence for phylogenetic relationship of Jacquemontia reclinata House (Convolvulaceae) – a critically endangered species from south Florida. Bot. J. Linn. Soc. 154: 443454.Google Scholar
Namoff, S., Luke, Q., Jiménez, F., Veloz, C. E. L., Sosa, V., Maunder, M. & Francisco-Ortega, J. (2010). Phylogenetic analysis of nucleotide sequences confirm a unique plant intercontinental disjunction between tropical Africa, the Caribbean, and the Hawaiian Islands. J. Plant Res. 123(1): 5765.Google Scholar
Pennington, R. T., Prado, D. E. & Pendry, C. A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 27: 261273.Google Scholar
Pennington, R. T., Lavin, M., Prado, D. E., Pendry, C. A., Pell, S. K. & Butterworth, C. A. (2004). Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos. Trans. Roy. Soc. B 359: 515537.Google Scholar
Pennington, R. T., Daza, A., Reynel, C. & Lavin, M. (2011). Poissonia eriantha (Leguminosae) from Cuzco, Peru: an overlooked species underscores a pattern of narrow endemism common to seasonally dry neotropical vegetation. Syst. Bot. 36(1): 5968.Google Scholar
Pontes, T. A. & Alves, M. (2011). Padrões de distribuição geográfica das espécies de Araceae ocorrentes em fragmentos de floresta atlântica em Pernambuco, Brasil. Rev. Brasil. Bioc. 9(4): 444454.Google Scholar
Prado, D. (1991). A critical evaluation of the floristic links between chaco and caatinga vegetation in South America. PhD thesis, University of St Andrews, St Andrews.Google Scholar
Prado, D. (2000). Seasonally dry forest of tropical South America: from forgotten ecosystems to a new phytogeographical unit. Edinburgh J. Bot. 57: 437461.Google Scholar
Prado, D. (2003). As caatingas da América do Sul. In: Leal, I., Tabarelli, M. & Silva, J. M. C. da (eds) Ecologia e conservação da Caatinga, pp. 374. Recife: Editora Universitária-UFPE.Google Scholar
Prado, D. & Gibbs, P. E. (1993). Patterns of species distributions in the dry seasonal forests of South America. Ann. Missouri Bot. Gard. 80: 902927.Google Scholar
Prance, G. T. (1982). Forest refuges: evidences from woody angiosperms. In: Prance, G. T. (ed.) Biological Diversification in the Tropics, pp. 137158. New York: Columbia University Press.Google Scholar
Rapini, A., Mello-Silva, R. & Kawasaki, M. L. (2002). Richness and endemism in Asclepiadoideae (Apocynaceae) from the Espinhaço Range of Minas Gerais, Brazil – a conservationist view. Biodivers. Conserv. 11: 17331746.Google Scholar
Rapini, A., Ribeiro, P. L., Lambert, S. & Pirani, J. R. (2008). A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4(12): 1624.Google Scholar
Ritter, M. & Waechter, J. L. (2004). Biogeografia do gênero Mikania Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Acta Bot. Brasil. 18: 643652.Google Scholar
Robertson, K. R. (1971). A revision of the genus Jacquemontia (Convolvulaceae) in North and Central America and the West Indies. PhD thesis, Washington University, St Louis.Google Scholar
Simon, M. F. & Proença, C. (2000). Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high altitude center of endemism? Biol. Conservation 96: 279296.Google Scholar
Staples, G. W. & Brummitt, R. K. (2007). Convolvulaceae. In: Heywood, V. H., Brummitt, R. K., Culham, A. & Seberg, O. (eds) Flowering Plant Families of the World, pp. 108110. Kew: Royal Botanic Gardens.Google Scholar
Thiers, B. (2012) (continuously updated). Index Herbariorum: A global directory of public herbaria and associated staff. Available at: http://sweetgum.nybg.org/ih/ (accessed 22 June 2012).Google Scholar
Townsend, T. M., Leavitt, D. H. & Reeder, T. W. (2011). Intercontinental dispersal by a microendemic borrowing reptile (Dibamidae). Proc. Biol. Soc. 278(1718): 25682574.Google Scholar
Werneck, F. P. & Colli, G. R. (2006). The lizard assemblage from Seasonally Dry Tropical Forest enclaves in the Cerrado biome, Brazil, and its association with the Pleistocenic Arc. J. Biogeogr. 33: 19831992.Google Scholar
Zappi, D. & Taylor, N. (2008). Diversidade e endemismo das Cactaceae na Cadeia do Espinhaço. Megadiversidade 4(12): 111116.Google Scholar