Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:31:18.714Z Has data issue: false hasContentIssue false

UNIFORM CONVERGENCE OF SERIES ESTIMATORS OVER FUNCTION SPACES

Published online by Cambridge University Press:  09 July 2008

Kyungchul Song*
Affiliation:
University of Pennsylvania
*
Address correspondence to Kyungchul Song, Department of Economics, University of Pennsylvania, 528 McNeil Bldg., 3718 Locust Walk, Philadelphia, PA 19104-6297, USA; e-mail: [email protected]

Abstract

This paper considers a series estimator of E[α(Y)|λ(X) = λ̄], (α,λ) ∈ 𝛢 × Λ, indexed by function spaces, and establishes the estimator's uniform convergence rate over λ̄ ∈ R, α ∈ 𝛢, and λ ∈ Λ, when 𝛢 and Λ have a finite integral bracketing entropy. The rate of convergence depends on the bracketing entropies of 𝛢 and Λ in general. In particular, we demonstrate that when each λ ∈ Λ is locally uniformly ℒ2-continuous in a parameter from a space of polynomial discrimination and the basis function vector pK in the series estimator keeps the smallest eigenvalue of E[pK(λ(X))pK(λ(X))‼] above zero uniformly over λ ∈ Λ, we can obtain the same convergence rate as that established by de Jong (2002, Journal of Econometrics 111, 1–9).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ai, C. & Chen, X. (2003) Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71, 17951843.CrossRefGoogle Scholar
Altonji, J. & Matzkin, R. (2005) Cross-section and panel data estimators for nonseparable models with endogenous regressors. Econometrica 73, 10531102.CrossRefGoogle Scholar
Andrews, D.W.K. (1991) Asymptotic normality of series estimators for nonparametric and semiparametric models. Econometrica 59, 307345.CrossRefGoogle Scholar
Andrews, D.W.K. (1994) Empirical process method in econometrics. In Engle, R.F. & McFadden, D.L. (eds.), Handbook of Econometrics, vol. 4, pp. 22472294. North-Holland.Google Scholar
Andrews, D.W.K. (1995) Nonparametric kernel estimation for semiparametric models. Econometric Theory 11, 560596.CrossRefGoogle Scholar
Andrews, D.W.K. (1997) A conditional Kolmogorov test. Econometrica 65, 10971128.CrossRefGoogle Scholar
Berge, C. (1963) Topological Spaces. Macmillan.Google Scholar
Bierens, H.J. & Ploberger, W. (1997) Asymptotic theory of integrated conditional moment test. Econometrica 65, 11291151.CrossRefGoogle Scholar
Chaudhuri, P. (1991) Nonparametric estimates of regression quantiles and their local Bahadur representation. Annals of Statistics 19, 760777.CrossRefGoogle Scholar
Chen, X., Linton, O., & van Keilegom, I. (2003) Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71, 15911608.CrossRefGoogle Scholar
Chen, X. & Shen, X. (1998) Sieve extremum estimates for weakly dependent data. Econometrica 66, 289314.CrossRefGoogle Scholar
Cox, D.D. (1988) Approximation of least squares regression on nested subspaces. Annals of Statistics 16, 713732.CrossRefGoogle Scholar
de Jong, R.M. (2002) A note on “Convergence rates and asymptotic normality for series estimators”: Uniform convergence rates. Journal of Econometrics 111, 19.CrossRefGoogle Scholar
Doukhan, P., Massart, P., & Rio, E. (1995) Invariance principles for absolutely regular empirical processes. Annales de l'Institut Henri Poincaré 31, 393427.Google Scholar
Einmahl, U. & Mason, D.M. (2000) An empirical process approach to the uniform consistency of kernel-type function estimators. Journal of Theoretical Probability 13, 137.CrossRefGoogle Scholar
Giné, E. & Guillou, A. (2002) Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l'Institut Henri Poincaré 38, 907921.CrossRefGoogle Scholar
Härdle, W., Janssen, P., & Serfling, M. (1988) Strong uniform consistency rates for estimators of conditional functionals. Annals of Statistics 16, 14281449.CrossRefGoogle Scholar
Lee, S. (2003) Efficient semiparametric estimation of a partial linear quantile regression model. Econometric Theory 19, 131.CrossRefGoogle Scholar
Newey, W.K. (1994) Series estimation of regression functionals. Econometric Theory 10, 128.Google Scholar
Newey, W.K. (1995) Convergence rates for series estimators. In Maddalla, G.S., Phillips, P.C.B., & Srinavasan, T.N. (eds.), Statistical Methods of Economics and Quantitative Economics: Essays in Honor of C.R. Rao Blackwell, pp. 254275. Cambridge.Google Scholar
Newey, W.K. (1997) Convergence rates and asymptotic normality for series estimators. Journal of Econometrics 79, 147168.CrossRefGoogle Scholar
Nolan, D. & Pollard, D. (1987) U-processes: Rates of convergence. Annals of Statistics 15, 780799.CrossRefGoogle Scholar
Pakes, A. & Pollard, D. (1989) Simulation and the asymptotics of optimization estimators. Econometrica 57, 10271057.CrossRefGoogle Scholar
Parzen, E. (1962) On estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 10651076.CrossRefGoogle Scholar
Pollard, D. (1984) Convergence of Stochastic Processes. Springer-Verlag.CrossRefGoogle Scholar
Pollard, D. (1989) A Maximal Inequality for Sums of Independent Processes under a Bracketing Entropy Condition. Manuscript, Yale University.Google Scholar
Pollard, D. (1990) Empirical Processes: Theory and Applications. CBMS Conference Series in Probability and Statistics, vol. 2. Institute of Mathematical Statistics.CrossRefGoogle Scholar
Silverman, B.W. (1978) Weak and strong uniform consistency of kernel estimate of a density and its derivatives. Annals of Statistics 6, 177184.CrossRefGoogle Scholar
Stone, C.J. (1982) Optimal global rates of convergence for nonparametric regression. Annals of Statistics 10, 10401053.CrossRefGoogle Scholar
Stute, W. (1982) A law of the iterated logarithm for kernel density estimators. Annals of Probability 10, 414422.CrossRefGoogle Scholar
Stute, W. (1984) Oscillation behavior of empirical processes: The multivariate case. Annals of Probability 12, 361379.CrossRefGoogle Scholar
Stute, W. (1997) Nonparametric model checks for regressions. Annals of Statistics 25, 613641.CrossRefGoogle Scholar
van der Vaart, A. (1996) New Donsker classes. Annals of Probability 24, 21282140.CrossRefGoogle Scholar
van der Vaart, A.W. & Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer-Verlag.CrossRefGoogle Scholar
Vytlacil, E. & Yildiz, N. (2007) Dummy endogenous variables in weakly separable models. Econometrica 75, 757779.CrossRefGoogle Scholar