Published online by Cambridge University Press: 13 July 2021
This article concerns the tail probabilities of a light-tailed Markov-modulated Lévy process stopped at a state-dependent Poisson rate. The tails are shown to decay exponentially at rates given by the unique positive and negative roots of the spectral abscissa of a certain matrix-valued function. We illustrate the use of our results with an application to the stationary distribution of wealth in a simple economic model in which agents with constant absolute risk aversion are subject to random mortality and income fluctuation.