Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T06:41:36.635Z Has data issue: false hasContentIssue false

SHARP TEST FOR EQUILIBRIUM UNIQUENESS IN DISCRETE GAMES WITH PRIVATE INFORMATION AND COMMON KNOWLEDGE UNOBSERVED HETEROGENEITY

Published online by Cambridge University Press:  16 March 2023

Mathieu Marcoux*
Affiliation:
Université de Montréal
*
Address correspondence to Mathieu Marcoux, Département de sciences économiques, Université de Montréal, Centre-Ville, Montréal, QC H3C 3J7, Canada; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper proposes a testof the single equilibrium in the data assumption commonly maintained when estimating static discrete games of incomplete information. By allowing for discrete common knowledge payoff-relevant unobserved heterogeneity, the test generalizes existing methods attributing all correlation betweenplayers’ decisions to multiple equilibria. It does not require the estimation of payoffs and is therefore useful in empirical applications leveraging multiple equilibria to identify the model’s primitives. The procedure boils down to testing the emptiness of the set of data generating processes that can rationalize the sample through a single equilibrium and a finite mixture over unobserved heterogeneity. Under verifiable conditions, this testable implication is generically sufficient for degenerate equilibrium selection. The main identifying assumption is the existence of an observable variable that plays the role of a proxy for the unobservable heterogeneity. Examples of such proxies are provided based on empirical applications from the existing literature.

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Footnotes

I thank Victor Aguirregabiria, Andrés Aradillas-López, Vincent Boucher, Martin Burda, Karim Chalak, Christian Gouriéroux, Paul Grieco, Marc Henry, Yingyao Hu, Yao Luo, Ismael Mourifié, Joris Pinkse, Eduardo Souza Rodrigues, Thomas Russell, Yuanyuan Wan, and Ruli Xiao for comments and insightful discussions. I benefited from the comments of several seminar participants at Penn State, University of Toronto, Canadian Econometrics Study Group 2021, and IO Canada Conference 2021. Finally, I thank Christopher Ferrall for useful coding advice. All errors are mine. Financial support from the Social Sciences and Humanities Research Council (SSHRC) and Ontario Graduate Scholarship (OGS) is gratefully acknowledged.

References

REFERENCES

Aguirregabiria, V. & Mira, P. (2007) Sequential estimation of dynamic discrete games. Econometrica 75(1), 153.CrossRefGoogle Scholar
Aguirregabiria, V. & Mira, P. (2019) Identification of games of incomplete information with multiple equilibria and unobserved heterogeneity. Quantitative Economics 10(4), 16591701.CrossRefGoogle Scholar
Allman, E., Mathias, C., & Rhodes, J. (2009) Identifiability of parameters in latent structure models with many observed variables. Annals of Statistics 37(6A), 30993132.CrossRefGoogle Scholar
Andrews, D. & Guggenberger, P. (2009) Validity of subsampling and “plug-in asymptotic” inference for parameters defined by moment inequalities. Econometric Theory 25(3), 669709.CrossRefGoogle Scholar
Andrews, D. & Soares, G. (2010) Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica 78(1), 119157.Google Scholar
Aradillas-López, A. (2012) Pairwise-difference estimation of incomplete information games. Journal of Econometrics 168(1), 120140.CrossRefGoogle Scholar
Aradillas-López, A. (2020) The econometrics of static games. Annual Review of Economics 12(3), 131.CrossRefGoogle Scholar
Aradillas-López, A. & Gandhi, A. (2016) Estimation of games with ordered actions: An application to chain-store entry. Quantitative Economics 7(3), 727780.CrossRefGoogle Scholar
Athey, S. & Haile, P. (2002) Identification of standard auction models. Econometrica 70(6), 21072140.CrossRefGoogle Scholar
Bajari, P., Benkard, C., & Levin, J. (2007) Estimating dynamic models of imperfect competition. Econometrica 75(5), 13311370.CrossRefGoogle Scholar
Bajari, P., Hong, H., Krainer, J., & Nekipelov, D. (2010) Estimating static models of strategic interactions. Journal of Business and Economic Statistics 28(4), 469482.CrossRefGoogle Scholar
Bajari, P., Hong, H., & Nekipelov, D. (2013) Game theory and econometrics: A survey of some recent research. In D. Acemoglu, M. Arellano, & E. Dekel (eds.), Advances in Economics and Econometrics, 10th World Congress, pp. 352. Cambridge.CrossRefGoogle Scholar
Ben-Porath, E. (1992) Signaling future actions and the potential for sacrifice. Journal of Economic Theory 57(1), 3651.CrossRefGoogle Scholar
Beresteanu, A., Molchanov, I., & Molinari, F. (2011) Sharp identification regions in models with convex moment predictions. Econometrica 79(6), 17851821.Google Scholar
Bergemann, D. & Morris, S. (2016) Bayes correlated equilibrium and the comparison of information structures in games. Theoretical Economics 11(2), 487522.CrossRefGoogle Scholar
Berry, S. & Tamer, E. (2006) Identification in models of oligopoly entry. Advances in Economics and Econometrics 2, 4685.CrossRefGoogle Scholar
Bonhomme, S., Jochmans, K., & Robin, J. (2016) Estimating multivariate latent-structure models. Annals of Statistics 44(2), 540563.CrossRefGoogle Scholar
Brock, W. & Durlauf, S. (2001) Discrete choice with social interactions. Review of Economic Studies 68(2), 235260.CrossRefGoogle Scholar
Bugni, F., Canay, I., & Shi, X. (2015) Specification tests for partially identified models defined by moment inequalities. Journal of Econometrics 185(1), 259282.CrossRefGoogle Scholar
Campo, S., Perrigne, I., & Vuong, Q. (2003) Asymmetry in first-price auctions with affiliated private values. Journal of Applied Econometrics 18(2), 179207.CrossRefGoogle Scholar
Chan, K. (2006) A simple mathematical approach for determining intersection of quadratic surfaces. Multiscale Optimization Methods and Applications, 271298.CrossRefGoogle Scholar
Chernozhukov, V., Lee, S., & Rosen, A. (2013) Intersection bounds: Estimation and inference. Econometrica 81(2), 667737.Google Scholar
Ciliberto, F. & Tamer, E. (2009) Market structure and multiple equilibria in airline markets. Econometrica 6(77), 17911828.Google Scholar
Cox, D., Little, J., & O’Shea, D. (2005) Using Algebraic Geometry , Graduate Texts in Mathematics. Springer.Google Scholar
Dawid, A. (1979) Conditional independence in statistical theory. Journal of the Royal Statistical Society - Series B 41(1), 131.CrossRefGoogle Scholar
De Paula, A. (2013) Econometric analysis of games with multiple equilibria. Annual Review of Economics 5(1), 107131.CrossRefGoogle Scholar
de Paula, A. & Tang, X. (2012) Inference of signs of interaction effects in simultaneous games with incomplete information. Econometrica 80(1), 143172.Google Scholar
de Paula, A. & Tang, X. (2020) Testable implications of multiple equilibria in discrete games with correlated types. Cemmap Working paper, pp. 1–35. https://www.cemmap.ac.uk/publication/testable-implications-of-multiple-equilibria-in-discrete-games-with-correlated-types/.Google Scholar
Delgado, M. & Hidalgo, J. (2000) Nonparametric inference on structural breaks. Journal of Econometrics 96(1), 113144.CrossRefGoogle Scholar
Espin-Sanchez, J., Parra, A., & Wang, Y. (2022) Equilibrium uniqueness in entry games with private information. RAND Journal of Economics 50(3), 568590.Google Scholar
Galichon, A. & Henry, M. (2011) Set identification in models with multiple equilibria. Review of Economic Studies 78(4), 12641298.CrossRefGoogle Scholar
Ghanem, D. (2017) Testing identifying assumptions in nonseparable panel data models. Journal of Econometrics 197(2), 202217.CrossRefGoogle Scholar
Gowrisankaran, G. & Krainer, J. (2011) Entry and pricing in a differentiated products industry: Evidence from the ATM market. RAND Journal of Economics 42(1), 122.CrossRefGoogle Scholar
Grieco, P. (2014) Discrete games with flexible information structures: An application to local grocery markets. RAND Journal of Economics 45(2), 303340.CrossRefGoogle Scholar
Guerre, E., Perrigne, I., & Vuong, Q. (2009) Nonparametric identification of risk aversion in first-price auctions under exclusion restrictions. Econometrica 77(4), 11931227.Google Scholar
Hahn, J., Moon, H., & Snider, C. (2017) LM test of neglected correlated random effects and its application. Journal of Business and Economic Statistics 35(3), 359370.CrossRefGoogle Scholar
Haile, P., Hong, H., & Shum, M. (2003) Nonparametric tests for common values at first-price sealed-bid auctions. NBER Working paper.CrossRefGoogle Scholar
Hall, P. & Zhou, X. (2003) Nonparametric estimation of component distributions in a multivariate mixture. Annals of Statistics 31(1), 201224.CrossRefGoogle Scholar
Henry, M., Kitamura, Y., & Salanié, B. (2014) Partial identification of finite mixtures in econometric models. Quantitative Economics 5(1), 123144.CrossRefGoogle Scholar
Hong, H. & Shum, M. (2002) Increasing competition and the winner’s curse: Evidence from procurement. Review of Economic Studies 69(4), 871898.CrossRefGoogle Scholar
Hsu, Y., Liu, C., & Shi, X. (2019) Testing generalized regression monotonicity. Econometric Theory 35(6), 11461200.CrossRefGoogle Scholar
Hu, Y. (2008) Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution. Journal of Econometrics 144(1), 2761.CrossRefGoogle Scholar
Hu, Y. (2017) The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics. Journal of Econometrics 200(2), 154168.CrossRefGoogle Scholar
Hu, Y. & Shum, M. (2012) Nonparametric identification of dynamic models with unobserved state variables. Journal of Econometrics 171(1), 3244.CrossRefGoogle Scholar
Igami, M. & Yang, N. (2016) Unobserved heterogeneity in dynamic games: Cannibalization and preemptive entry of hamburger chains in Canada. Quantitative Economics 7(2), 483521.CrossRefGoogle Scholar
Jia, P. (2008) What happens when Wal-Mart comes to town: An empirical analysis of the discount retailing industry. Econometrica 76(6), 12631316.Google Scholar
Kasahara, H. & Shimotsu, K. (2009) Nonparametric identification of finite mixture models of dynamic discrete choices. Econometrica 77(1), 135175.Google Scholar
Kasahara, H. & Shimotsu, K. (2014) Non-parametric identification and estimation of the number of components in multivariate mixtures. Journal of the Royal Statistical Society - Series B 76(1), 97111.CrossRefGoogle Scholar
Kasy, M. (2015) Nonparametric inference on the number of equilibria. The Econometrics Journal 18(1), 139.CrossRefGoogle Scholar
Khan, S. & Nekipelov, D. (2018) Information structure and statistical information in discrete response models. Quantitative Economics 9(2), 9951017.CrossRefGoogle Scholar
Kitagawa, T. (2015) A test for instrument validity. Econometrica 83(5), 20432063.CrossRefGoogle Scholar
Kline, B. & Tamer, E. (2016) Bayesian inference in a class of partially identified models. Quantitative Economics 7(2), 329366.CrossRefGoogle Scholar
Lewbel, A. & Tang, X. (2015) Identification of games with incomplete information using excluded regressors. Journal of Econometrics 189(1), 229244.CrossRefGoogle Scholar
Luo, Y., Xiao, P., & Xiao, R. (2022) Identification of dynamic games with unobserved heterogeneity and multiple equilibria. Journal of Econometrics 226(2), 343367.CrossRefGoogle Scholar
Magesan, A. (2018) Identification of static and dynamic games of incomplete information with multiple equilibria in the data. SSRN Working paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2985097.Google Scholar
Magnolfi, L. & Roncoroni, C. (2022) Estimation of discrete games with weak assumptions on information. The Review of Economic Studies. https://academic.oup.com/restud/advance-article/doi/10.1093/restud/rdac058/6670639?login=true.CrossRefGoogle Scholar
Milgrom, P. & Weber, R. (1985) Distributional strategies for games with incomplete information. Mathematics of Operations Research 10(4), 619632.CrossRefGoogle Scholar
Mourifié, I., Henry, M., & Méango, R. (2020) Sharp bounds and testability of a Roy model of STEM major choices. Journal of Political Economy 128(8).CrossRefGoogle Scholar
Mourifié, I. & Wan, Y. (2017) Testing local average treatment effect assumptions. Review of Economics and Statistics 99(2), 305313.CrossRefGoogle Scholar
Muller, H. (1992) Change-points in nonparametric regression analysis. Annals of Statistics 20(2), 737761.CrossRefGoogle Scholar
Navarro, S. & Takahashi, Y. (2012) A semiparametric test of agent’s information sets for games of incomplete information. EconStor Working paper. https://www.econstor.eu/handle/10419/94083?locale=en.Google Scholar
Otsu, T., Pesendorfer, M., & Takahashi, Y. (2016) Pooling data across markets in dynamic Markov games. Quantitative Economics 7(2), 523559.CrossRefGoogle Scholar
Pakes, A., Ostrovsky, M., & Berry, S. (2007) Simple estimators for the parameters of discrete dynamic games (with entry/exit examples). RAND Journal of Economics 38(2), 373399.CrossRefGoogle Scholar
Pesendorfer, M. & Schmidt-Dengler, P. (2008) Asymptotic least squares estimators for dynamic games. Review of Economic Studies 75(3), 901928.CrossRefGoogle Scholar
Seim, K. (2006) An empirical model of firm entry with endogenous product-type choices. RAND Journal of Economics 37(3), 619640.CrossRefGoogle Scholar
Shi, X. & Shum, M. (2015) Simple two-stage inference for a class of partially identified models. Econometric Theory 31(3), 493520.CrossRefGoogle Scholar
Sweeting, A. (2009) The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria. RAND Journal of Economics 40(4), 710742.CrossRefGoogle Scholar
Syrgkanis, V., Tamer, E., & Ziani, J. (2018) Inference on auctions with weak assumptions on information. Arxiv Working paper. https://arxiv.org/abs/1710.03830.Google Scholar
Tamer, E. (2003) Incomplete simultaneous discrete response model with multiple equilibria. Review of Economic Studies 70(1), 147165.CrossRefGoogle Scholar
Van Damme, E. (1989) Stable equilibria and forward induction. Journal of Economic Theory 48(2), 476496.CrossRefGoogle Scholar
Xiao, R. (2018) Identification and estimation of incomplete information games with multiple equilibria. Journal of Econometrics 203(2), 328343.CrossRefGoogle Scholar