Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:19:16.484Z Has data issue: false hasContentIssue false

NONPARAMETRIC WEIGHTED AVERAGE QUANTILE DERIVATIVE

Published online by Cambridge University Press:  03 June 2021

Ying-Ying Lee*
Affiliation:
University of California Irvine
*
Address correspondence to Ying-Ying Lee, Department of Economics, University of California Irvine, 3151 Social Science Plaza, Irvine, CA92697, USA; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The weighted average quantile derivative (AQD) is the expected value of the partial derivative of the conditional quantile function (CQF) weighted by a function of the covariates. We consider two weighting functions: a known function chosen by researchers and the density function of the covariates that is parallel to the average mean derivative in Powell, Stock, and Stoker (1989, Econometrica 57, 1403–1430). The AQD summarizes the marginal response of the covariates on the CQF and defines a nonparametric quantile regression coefficient. In semiparametric single-index and partially linear models, the AQD identifies the coefficients up to scale. In nonparametric nonseparable structural models, the AQD conveys an average structural effect under certain independence assumptions. Including a stochastic trimming function, the proposed two-step estimator is root-n-consistent for the AQD defined by the entire support of the covariates. To facilitate tractable asymptotic analysis, a key preliminary result is a new Bahadur-type linear representation of the generalized inverse kernel-based CQF estimator uniformly over the covariates in an expanding compact set and over the quantile levels. The weak convergence to Gaussian processes applies to the differentiable nonlinear functionals of the quantile processes.

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Footnotes

This paper is based on the second chapter of my PhD dissertation. I am grateful to Bruce Hansen and Jack Porter for invaluable comments and guidance. I also thank Chris Tabor, Matias Cattaneo, David Jacho-Chávez, Alexandre Poirier, Emmanuel Guerre, Ingrid van Keilegom, and Efang Kong for helpful comments and discussion. Finally, I want to thank the Editor Peter C.B. Phillips, the Co-Editor Michael Jansson, and two anonymous referees whose comments have significantly improved this paper.

References

REFERENCES

Andrews, D. W. K. & Shi, X. (2013) Inference based on conditional moment inequalities. Econometrica 81(2), 609666.Google Scholar
Belloni, A., Chernozhukov, V., Chetverikov, D., & Fernández-Val, I. (2019) Conditional quantile processes based on series or many regressors. Journal of Econometrics 213(1), 429. Annals: In Honor of Roger Koenker.CrossRefGoogle Scholar
Bhattacharya, P. K. & Gangopadhyay, A. K. (1990) Kernel and nearest-neighbor estimation of a conditional quantile. Annals of Statistics 18(3), 14001415.CrossRefGoogle Scholar
Calonico, S., Cattaneo, M. D. & Farrell, M. H. (2018) On the effect of bias estimation on coverage accuracy in nonparametric inference. Journal of the American Statistical Association 113(522), 767779.CrossRefGoogle Scholar
Cattaneo, M. D., Crump, R. K. & Jansson, M. (2010) Robust data-driven inference for density-weighted average derivatives. Journal of the American Statistical Association 105(491), 10701083.CrossRefGoogle Scholar
Cattaneo, M. D., Crump, R. K. & Jansson, M. (2013) Generalized Jackknife estimators of weighted average derivatives. Journal of the American Statistical Association 108(504), 12431256.CrossRefGoogle Scholar
Cattaneo, M. D., Crump, R. K. & Jansson, M. (2014a) Bootstrapping density-weighted average derivatives. Econometric Theory 30(6), 11351164.CrossRefGoogle Scholar
Cattaneo, M. D., Crump, R. K. & Jansson, M. (2014b) Small bandwidth asymptotics for density-weighted average derivatives. Econometric Theory 30(1), 176200.CrossRefGoogle Scholar
Cattaneo, M. D. & Jansson, M. (2018) Kernel-based semiparametric estimators: Small bandwidth asymptotics and bootstrap consistency. Econometrica 86(3), 955995.CrossRefGoogle Scholar
Chaudhuri, P., Doksum, K. & Samarov, A. (1997) On average derivative quantile regression. Annals of Statistics 25(2), 715744.CrossRefGoogle Scholar
Chernozhukov, V., Fernández-Val, I. & Galichon, A. (2010) Quantile and probability curves without crossing. Econometrica 78(3), 10931125.Google Scholar
Chernozhukov, V., Fernández-Val, I. & Melly, B. (2013) Inference on counterfactual distributions. Econometrica 81(6), 22052268.Google Scholar
Chernozhukov, V. & Hansen, C. (2005) An IV model of quantile treatment effects. Econometrica 73(1), 245261.CrossRefGoogle Scholar
Chesher, A. (2003) Identification in nonseparable models. Econometrica 71(5), 14051441.CrossRefGoogle Scholar
Dabrowska, D. M. (1992) Nonparametric quantile regression with censored data. Sankhy: The Indian Journal of Statistics, Series A (1961–2002) 54(2), 252259.Google Scholar
Escanciano, J. C., Jacho-Chávez, D. T. & Lewbel, A. (2014) Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing. Journal of Econometrics 178(3), 426443.CrossRefGoogle Scholar
Fan, Y. & Guerre, E. (2016) Multivariate local polynomial estimators: Uniform boundary properties and asymptotic linear representation. Essays in Honor of Aman Ullah, Advances in Econometrics 14, 489537.Google Scholar
Fan, Y. & Liu, R. (2016) A direct approach to inference in nonparametric and semiparametric quantile models. Journal of Econometrics 191(1), 196216.CrossRefGoogle Scholar
Graham, B., Hahn, J., Poirier, A. & Powell, J. (2018) A quantile correlated random coefficients panel data model. Journal of Econometrics 206(2), 303335.CrossRefGoogle Scholar
Guerre, E., Perrigne, I. & Vuong, Q. (2000) Optimal nonparametric estimation of first-price auctions. Econometrica 68(3), 525574.CrossRefGoogle Scholar
Guerre, E. & Sabbah, C. (2012) Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econometric Theory 28, 87129.CrossRefGoogle Scholar
Hansen, B. E. (2008) Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24(3), 726748.CrossRefGoogle Scholar
Härdle, W. & Stoker, T. M. (1989) Investigating smooth multiple regression by the method of average derivatives. Journal of the American Statistical Association 84(408), 986995.Google Scholar
Hoderlein, S. & Mammen, E. (2007) Identification of marginal effects in nonseparable models without monotonicity. Econometrica 75(5), 15131518.CrossRefGoogle Scholar
Hoderlein, S. & Mammen, E. (2009) Identification and estimation of local average derivatives in non-separable models without monotonicity. The Econometrics Journal 12(1), 125.CrossRefGoogle Scholar
Ichimura, H. & Todd, P.E. (2007) Chapter 74: Implementing nonparametric and semiparametric estimators. In Heckman, J. & Leamer, E. (eds.), Handbook of Econometrics. Handbook of Econometrics, vol. 6. Elsevier.Google Scholar
Khan, S. (2001) Two-stage rank estimation of quantile index models. Journal of Econometrics 100(2), 319355.CrossRefGoogle Scholar
Khan, S. & Tamer, E. (2010) Irregular identification, support conditions, and inverse weight estimation. Econometrica 78(6), 20212042.Google Scholar
Koenker, R. & Bassett, G. (1978) Regression quantile. Econometrica 46, 3350.CrossRefGoogle Scholar
Kong, E., Linton, O. & Xia, Y. (2010) Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econometric Theory 26, 15291564.CrossRefGoogle Scholar
Kong, E. & Xia, Y. (2012) A single-index quantile regression model and its estimation. Econometric Theory 28, 730768.CrossRefGoogle Scholar
Kosorok, M. R. (2008) Introduction to Empirical Processes and Semiparametric Inference (Springer).CrossRefGoogle Scholar
Lavergne, P. & Vuong, Q. H. (1996) Nonparametric selection of regressors: The nonnested case. Econometrica 64(1), 207219.CrossRefGoogle Scholar
Lee, S. (2003) Efficient semiparametric estimation of a partially linear quantile regression model. Econometric Theory 19(1), 131.CrossRefGoogle Scholar
Ma, X. & Wang, J. (2019) Robust inference using inverse probability weighting. Journal of the American Statistical Association 115(532), 18511860.CrossRefGoogle Scholar
Marmer, V. & Shneyerov, A. (2012) Quantile-based nonparametric inference for first-price auctions. Journal of Econometrics 167(2), 345357.CrossRefGoogle Scholar
Matzkin, R. L. (2007) Nonparametric identification. In Heckman, J. & Leamer, E. (eds.), Handbook of Econometrics. Elsevier, 53075368.CrossRefGoogle Scholar
Newey, W. & Stoker, T. M. (1993) Efficiency of weighted average derivative estimators and index models. Econometrica 61(5), 11991223.CrossRefGoogle Scholar
Newey, W. K. (1990) Semiparametric efficiency bounds. Journal of Applied Econometrics 5(2), 99135.CrossRefGoogle Scholar
Nishiyama, Y. & Robinson, P. M. (2000) Edgeworth expansions for semiparametric averaged derivatives. Econometrica 68(4), 931980.CrossRefGoogle Scholar
Pakes, A. & Pollard, D. (1989) Simulation and the asymptotics of optimization estimators. Econometrica 57(5), 10271057.CrossRefGoogle Scholar
Phillips, P. C. (2015) Halbert White Jr. memorial JFEC lecture: Pitfalls and possibilities in predictive regression. Journal of Financial Econometrics 13(3), 521555.CrossRefGoogle Scholar
Pollard, D. (1990) Empirical Processes: Theory and Applications. NSF - CBMS Regional Conference Series in Probability and Statistics, Volume 2, IMS, Hayward, American Statistical Association, Alexandria.CrossRefGoogle Scholar
Powell, J. L., Stock, J. H. & Stoker, T. M. (1989) Semiparametric estimation of index coefficients. Econometrica 57(6), 14031430.CrossRefGoogle Scholar
Powell, J. L. & Stoker, T. M. (1996) Optimal bandwidth choice for density-weighted averages. Journal of Econometrics 75(2), 291316.CrossRefGoogle Scholar
Qu, Z. & Yoon, J. (2015) Nonparametric estimation and inference on conditional quantile processes. Journal of Econometrics 185(1), 119.CrossRefGoogle Scholar
Robinson, P. M. (1988) Root-n-consistent semiparametric regression. Econometrica 56(4), 931954.CrossRefGoogle Scholar
Rothe, C. (2010) Nonparametric estimation of distributional policy effects. Journal of Econometrics 155(1), 5670.CrossRefGoogle Scholar
Sasaki, Y. (2015) What do quantile regressions identify for general structural functions? Econometric Theory 31(5), 11021116.CrossRefGoogle Scholar
Sasaki, Y. & Ura, T. (2021) Estimation and inference for moments of ratios with robustness against large trimming bias. Econometric Theory, first published online 23 February 2021; https://doi.org/10.1017/S0266466621000025.CrossRefGoogle Scholar
Schafgans, M. & Zinde-Walsh, V. (2010) Smoothness adaptive average derivative estimation. Econometrics Journal 13(1), 4062.CrossRefGoogle Scholar
Sherman, R. (1994) Maximal inequalities for degenerate $U$ -processes with applications to optimization estimators. Annals of Statistics 22(1), 439459.CrossRefGoogle Scholar
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall.Google Scholar
Stoker, T. M. (1986) Consistent estimation of scaled coefficients. Econometrica 54(6), 14611481.CrossRefGoogle Scholar
van der Vaart, A. (2000) Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.Google Scholar
Wu, T. Z., Yu, K. & Yu, Y. (2010) Single-index quantile regression. Journal of Multivariate Analysis 101(7), 16071621.CrossRefGoogle Scholar