No CrossRef data available.
Published online by Cambridge University Press: 20 December 2022
We study large sample properties of likelihood ratio tests of the unit-root hypothesis in an autoregressive model of arbitrary order. Earlier research on this testing problem has developed likelihood ratio tests in the autoregressive model of order 1, but resorted to a plug-in approach when dealing with higher-order models. In contrast, we consider the full model and derive the relevant large sample properties of likelihood ratio tests under a local-to-unity asymptotic framework. As in the simpler model, we show that the full likelihood ratio tests are nearly efficient, in the sense that their asymptotic local power functions are virtually indistinguishable from the Gaussian power envelopes. Extensions to sieve-type approximations and different classes of alternatives are also considered.
We are grateful to Peter Phillips, two anonymous referees, and seminar participants at Queen’s University for comments and discussion, and to the Danish National Research Foundation for financial support (DNRF Chair Grant No. DNRF154).