Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:16:07.808Z Has data issue: false hasContentIssue false

Momentary Lapses: Moment Expansions and the Robustness of Minimum Distance Estimation

Published online by Cambridge University Press:  11 February 2009

Roger Koenker
Affiliation:
University of Illinois at Urbana-Champaign
José A.F. Machado
Affiliation:
Universidade Nova de Lisboa
Christopher L. Skeels
Affiliation:
Australian National University
Alan H. Welsh
Affiliation:
Australian National University

Abstract

This paper explores the robustness of minimum distance (GMM) estimators focusing particularly on the effect of intermediate covariance matrix estimation on final estimator performance. Asymptotic expansions to order Op(n−3/2) are employed to construct O(n−2) expansions for the variance of estimators constructed from preliminary least-squares and general M-estimators. In the former case, there is a rather curious robustifying effect due to estimation of the Eicker-White covariance matrix for error distributions with sufficiently large kurtosis.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bickel, P.J. & Doksum, K.. Mathematical Statistics. San Francisco: Holden Day, 1977.Google Scholar
2.Box, G.E.P. & Watson, G.S.. Robustness to non-normality of regression tests. Biometrika 49 (1962): 93106.CrossRefGoogle Scholar
3.Carroll, R.J., Wu, C.F.J. & Ruppert, D.. The effect of estimating weights in weighted least squares. JASA 83 (1988): 10451054.CrossRefGoogle Scholar
4.Chamberlain, G.Multivariate regression models for panel data. Journal of Econometrics 18 (1982): 546.CrossRefGoogle Scholar
5.Chamberlain, G.Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics 34 (1987): 305334.CrossRefGoogle Scholar
6.Cramér, H.Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946.Google Scholar
7.Gallant, A.R.Nonlinear Statistical Models. New York: Wiley, 1987.CrossRefGoogle Scholar
8.Hansen, L.P.Large sample properties of generalized method of moment estimators. Econometrica 50 (1982): 10291054.CrossRefGoogle Scholar
9.Hansen, L.P. & Singleton, K.J.. Stochastic consumption, risk aversion, and the temporal behavior of stock market returns. Journal of Political Economy 91 (1983): 249265.CrossRefGoogle Scholar
10.Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. & Stahel, W.A.. Robust Statistics. New York: Wiley, 1986.Google Scholar
11.Huber, P.J.Robust estimation of a location parameter. Annals of Mathematical Statistics 36 (1964): 17531758.CrossRefGoogle Scholar
12.Huber, P.J.Robust regression, asymptotics, conjectures and Monte-Carlo. Annals of Statistics 1 (1973): 799821.CrossRefGoogle Scholar
13.Huber, P.J.Robust Statistics. New York: Wiley, 1981.CrossRefGoogle Scholar
14.Jurečková, J. Robust estimators of location and their second-order asymptotic relations. In Atkinson, A.C. and Fienberg, S.E. (eds.), A Celebration of Statistics. New York: Springer-Verlag, 1985.Google Scholar
15.Koenker, R., Machado, J.A.F., Skeels, C.L. & Welsh, A.H.. A note on Amemiya's form of the weighted least squares estimator. Australian Journal of Statistics 35 (1993): 155217.CrossRefGoogle Scholar
16.Manski, C.Analog Estimation Methods in Econometrics. New York: Chapman and Hall, 1988.Google Scholar
17.Mitrofanova, N.M.An asymptotic expansion for the maximum likelihood estimator of a vector parameter. Theory of Probability and its Applications 12 (1967): 364372.CrossRefGoogle Scholar
18.Newey, W.Generalized method of moments specification testing. Journal of Econometrics 29 (1985): 229256.CrossRefGoogle Scholar
19.Newey, W.Asymptotic equivalence of closest moments and GMM estimators. Econometric Theory 4 (1988): 336340.CrossRefGoogle Scholar
20.Phillips, P.C.B.A general theorem in the theory of asymptotic expansions as approximations to the finite sample distributions of econometric estimators. Econometrica 45 (1977): 15171535.CrossRefGoogle Scholar
21.Phillips, P.C.B.Finite sample econometrics using ERA's. Journal of the Japan Statistical Society 14 (1984): 107124.Google Scholar
22.Phillips, P.C.B. Operational algebra and regression t-tests. In Phillips, P.C.B. (ed.), Models, Methods, and Applications of Econometrics. Oxford: Blackwell, 1993.Google Scholar
23.Rothenberg, T.J.Approximate normality of generalized least squares estimates. Econometrica 52 (1984): 811825.CrossRefGoogle Scholar
24.Rousseeuw, P.J. & Leroy, A.M.. Robust Regression and Outlier Detection. New York: Wiley, 1987.CrossRefGoogle Scholar
25.Sargan, J.D.Econometric estimators and the Edgeworth expansion. Econometrica 44 (1976): 421448.CrossRefGoogle Scholar
26.Skovgaard, I.M.Edgeworth expansions of the distributions of maximum likelihood estimators in the general (non iid) case. Scandinavian Journal of Statistics 8 (1981): 227236.Google Scholar
27.Tauchen, G.E.Statistical properties of generalized method of moments estimators of structural parameters obtained from financial market data. Journal of Business and Economic Statistics 4 (1986): 397424 (with discussion).CrossRefGoogle Scholar
28.Tukey, J.W. A survey of sampling from contaminated normal distributions. In Olkin, J. (ed.), Contributions to Probability and Statistics. Stanford: Stanford University Press, 1960.Google Scholar
29.Welsh, A.H.On M-process and M-estimation. Annals of Statistics 17 (1989): 337361.CrossRefGoogle Scholar