Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:02:12.176Z Has data issue: false hasContentIssue false

Matrix Differential CalculusJan R. Magnus and Heinz Neudecker John Wiley and Sons, 1988 - Linear StructuresJan R. Magnus Charles Griffin and Co., 1988

Published online by Cambridge University Press:  18 October 2010

D.S.G. Pollock
Affiliation:
Queen Mary College, University of London

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Reviews
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anderson, T.W.Introduction to multivariate statistical analysis. New York: John Wiley & Sons, 1958.Google Scholar
2.Balestra, P.La dérivation matricielle. Paris: Sirey, 1976.Google Scholar
3.Bourbaki, N.Algèbre multilinéaire. In Eléments de Mathématique, Chapter 3, Book II (Algèbre). Paris: Herman, 1958.Google Scholar
4.Dwyer, P.S.Some applications of matrix derivatives in multivariate analysis. Journal of the American Statistical Association 62 (1967): 607625.CrossRefGoogle Scholar
5.Dwyer, P.S. & MacPhail, M.S.. Symbolic matrix derivatives. Annals of Mathematical Statistics 19 (1948): 517534.CrossRefGoogle Scholar
6.Graham, A.Kronecker products and matrix calculus with applications. Chichester: Ellis Horwood, 1981.Google Scholar
7.Greub, W.H.Multilinear algebra. Berlin: Springer, 1967.CrossRefGoogle Scholar
8.Henderson, H.V. & Searle, S.R., vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Canadian Journal of Statistics 7 (1979): 6581.CrossRefGoogle Scholar
9.Henderson, H.V. & Searle, S.R.. The vec-permutation matrix, the vec operator, and Kronecker products: a review. Linear and Multilinear Algebra 9 (1981): 271288.CrossRefGoogle Scholar
10.Hood, W.C. & Koopmans, T.C. (eds.). Studies in Econometric Method, Monograph No. 14, Cowles Foundation for Research in Economics. New Haven: Yale University Press, 1953.Google Scholar
11.Koopmans, T.C. (ed.). Statistical Inference in Dynamic Economic Models, Monograph No. 10, Cowles Foundation for Research in Economics. New York: John Wiley & Sons, 1950.Google Scholar
12.Koopmans, T.C., Rubin, H. & Leipnik, R.B.. Measuring the equation systems of dynamic economics. In Koopmans, T.C. (ed.), Statistical Inference in Dynamic Economic Models, Chapter 2, Monograph No. 10, Cowles Foundation for Research in Economics. New York: John Wiley & Sons, 1950.Google Scholar
13.MacRae, E.C.Matrix derivatives with an application to an adaptive linear decision problem. Annals of Statistics 2 (1974): 337346.CrossRefGoogle Scholar
14.Magnus, J.R.Linear structures. London: Charles Griffin & Co., 1988.Google Scholar
15.Magnus, J.R. & Neudecker, H.. Matrix differential calculus. Chichester: John Wiley & Sons, 1988.Google Scholar
16.Marcus, M.Finite-dimensional multilinear algebra: Part I. New York: Marcel Dekker, 1973.Google Scholar
17.Nel, D.G.On matrix differentiation in statistics. South African Statistical Journal 14 (1980): 137194.Google Scholar
18.Pollock, D.S.G.Tensor products and matrix differential calculus. Linear Algebra and its Applications 67 (1985): 169193.CrossRefGoogle Scholar
19.Rao, C.R.Linear statistical inference and its applications. New York: John Wiley & Sons, Inc., 1965.Google Scholar
20.Rogers, G.S.Matrix derivatives. New York: Marcel Dekker, 1980.Google Scholar