Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T08:00:46.220Z Has data issue: false hasContentIssue false

IDENTIFICATION AND ESTIMATION BY PENALIZATION IN NONPARAMETRIC INSTRUMENTAL REGRESSION

Published online by Cambridge University Press:  12 October 2010

Jean-Pierre Florens
Affiliation:
Toulouse School of Economics
Jan Johannes
Affiliation:
Université Catholique de Louvain
Sébastien Van Bellegem*
Affiliation:
Toulouse School of Economics and CORE
*
*Address correspondence to Sébastien Van Bellegem, 21 Allée de Brienne, 31000 Toulouse, France; email: [email protected].

Abstract

The nonparametric estimation of a regression function from conditional moment restrictions involving instrumental variables is considered. The rate of convergence of penalized estimators is studied in the case where the regression function is not identified from the conditional moment restriction. We also study the gain of modifying the penalty in the estimation, considering derivatives in the penalty. We analyze the effect of this modification on the identification of the regression function and the rate of convergence of its estimator.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blundell, R., Chen, X., & Kristensen, D. (2007) Semi-nonparametric IV estimation of shape-invariant Engel curves. Econometrica 75, 16131669.CrossRefGoogle Scholar
Blundell, R. & Horowitz, J. (2007) A nonparametric test of exogeneity. Review Economic Studies, 74, 10351058.CrossRefGoogle Scholar
Carrasco, M., Florens, J.-P., & Renault, E. (2008) Linear inverse problems in structural econometrics: Estimation based on spectral decomposition and regularization. In Heckman, J. & Leamer, E. (eds.), Handbook of Econometrics, vol. 6, pp. 56335751. Elsevier.CrossRefGoogle Scholar
Chen, X. (2008) Large sample sieve estimation of semi-nonparametric models. In Heckman, J. & Leamer, E. (eds.), Handbook of Econometrics, vol. 6, pp. 55495632. Elsevier.CrossRefGoogle Scholar
Chen, X. & Reiss, M. (2010) On rate optimality for ill-posed inverse problems in econometrics. Econometric Theory 27 (this issue).Google Scholar
Chernozhukov, V. & Hansen, C. (2005) An IV model of quantile treatment effects. Econometrica 73, 245261.CrossRefGoogle Scholar
Craven, P. & Wahba, G. (1979) Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics 31, 377403.CrossRefGoogle Scholar
Darolles, S., Florens, J.-P., & Renault, E. (2002) Nonparametric Instrumental Regression. Working Paper #228, IDEI, Université de Toulouse I.Google Scholar
Das, M. (2005) Instrumental variables estimators of nonparametric models with discrete endogenous regressors. Journal of Econometrics 124, 335361.CrossRefGoogle Scholar
Engl, H.W., Hanke, M., & Neubauer, A. (2000) Regularization of Inverse Problems. Kluwer Academic.Google Scholar
Florens, J.-P., Johannes, J., & Van Bellegem, S. (2005) Instrumental Regression in Partially Linear Models. Discussion paper #0537, Institut de Statistique, Université catholique de Louvain.CrossRefGoogle Scholar
Gagliardini, P. & Scaillet, O. (2006) Tikhonov Regularization for Functional Minimum Distance Estimators. Swiss Finance Institute Research Paper No. 06–30.Google Scholar
Hall, P. & Horowitz, J.L. (2005) Nonparametric methods for inference in the presence of instrumental variables. Annals of Statistics 33, 29042929.CrossRefGoogle Scholar
Hille, E. & Tamarkin, J.D. (1931) On the characteristic values of linear integral equations. Acta Mathematica 57, 176.CrossRefGoogle Scholar
Horowitz, J.L. & Lee, S. (2007) Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75, 11911208.CrossRefGoogle Scholar
Johannes, J., Van Bellegem, S., & Vanhems, A. (2010) Projection Estimation in Nonparametric Instrumental Regression. Working paper, CORE, Université catholique de Louvain.Google Scholar
Kawata, T. (1972) Fourier Analysis in Probability Theory. Academic Press.Google Scholar
Locker, J. & Prenter, P. (1980) Regularization with differential operators I: General theory. Journal of Mathematical Analysis and Applications 74, 504529.CrossRefGoogle Scholar
Mair, B.A. & Ruymgaart, F.H. (1996) Statistical inverse estimation in Hilbert scales. SIAM Journal of Applied Mathematics 56(5), 14241444.CrossRefGoogle Scholar
Matzkin, R. (2003) Nonparametric estimation of nonadditive random functions. Econometrica 71, 13391375.Google Scholar
Newey, W.K. & Powell, J.L. (2003) Instrumental variable estimation of nonparametric models. Econometrica 71, 15651578.CrossRefGoogle Scholar
Wahba, G. (1977) Practical aproximate solutions to linear operator equations when the data are noisy. SIAM Journal of Numerical Analysis 14, 651667.CrossRefGoogle Scholar
White, H. & Wooldridge, J. (1991) Some results on Sieve estimation with dependent observations. In Barnett, W., Powell, J., & Tauchen, G. (eds.), Nonparametric and Semi-Parametric Methods in Econometrics and Statistics, pp. 459493. Cambridge University Press.Google Scholar