Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:51:41.706Z Has data issue: false hasContentIssue false

A General Framework for Testing a Null Hypothesis in a “Mixed” Form

Published online by Cambridge University Press:  18 October 2010

C. Gourieroux
Affiliation:
CEPREMAP et ENSAE, Paris
A. Monfort
Affiliation:
Unité de Recherche, INSEE, Paris

Abstract

A general framework for asymptotic tests is proposed. The framework contains as particular cases tests based on various estimation techniques: maximum likelihood methods, pseudo-maximum likelihood (PML) methods and quasi-generalized PML methods, m-estimation methods, moments or generalized moments method, and asymptotic least squares. Moreover the null hypothesis has a general mixed form, including the usual implicit and explicit form.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Andrews, D. W. K., Asymptotic results for generalized Wald tests. Cowles Foundation Discussion Paper No. 761R, 1985.Google Scholar
2.Bates, C.E. & White, H.. A unified theory of consistent estimation for parametric models. Econometric Theory 1 (1985): 151178.CrossRefGoogle Scholar
3.Bierens, H.J.Consistent model specification tests. Journal of Econometrics 20 (1982): 105134.CrossRefGoogle Scholar
4.Burguete, J.F., Gallant, A.R., & Souza, G.. On the unification of the asymptotic theory of non-linear econometric models. Econometric Review 1 (1982): 151190.CrossRefGoogle Scholar
5.Chamberlain, G., Multivariate regression models for panel data. Journal of Econometrics 18 (1982): 546.CrossRefGoogle Scholar
6.Chamberlain, G., Asymptotic efficiency in estimation with conditional moment restrictions. Working paper, University of Wisconsin, Madison, 1983.Google Scholar
7.Gallant, A.R.Non Linear Statistical Methods. New York: John Wiley, 1987.Google Scholar
8.Gallant, A.R. & White, H.. A unified theory of estimation and inference for nonlinear dynamic models. Working paper, University of California, San Diego, 1985.Google Scholar
9.Gourieroux, C., Monfort, A., & Renault, E.. Contraintes bilinéaires: estimation et test, in Mèlanges Economiques, Essais enl'honneur d' E. Malinvaud, Economica, Paris, 1988.Google Scholar
10.Gourieroux, C., Monfort, A., & Trognon, A.. Pseudo maximum likelihood methods: theory. Econometrica 52 (1984): 681700.CrossRefGoogle Scholar
11.Gourieroux, C., Monfort, A., & Trognon, A.. Moindres carrés asymptotiques. Annales de l'INSEE 58 (1985): 91122.CrossRefGoogle Scholar
12.Gourieroux, C., Monfort, A., & Renault, E.. Testing for common roots. Econometrica, forthcoming.Google Scholar
13.Hansen, L.P.Large sample properties of generalized method of moments estimators. Econometrica 50 (1982): 10291054.CrossRefGoogle Scholar
14.Hausman, J.A.Specification tests in econometrics. Econometrica 46 (1978): 12511272.CrossRefGoogle Scholar
15.Holly, A.A remark on Hausman's specification test. Econometrica 50 (1982): 749759.CrossRefGoogle Scholar
16.Huber, P.J.Robust Statistics. New York: John Wiley, 1981.CrossRefGoogle Scholar
17.Monfort, A. & Rabemananjara, R.. From a V.A.R. model to a structural model, with an application to the wage price spiral. Document de travail ENSAE/INSEE No. 8707, 1987.Google Scholar
18.Newey, W.K.Maximum likelihood specification testing and conditional moment tests. Econometrica 53 (1985): 10471070.CrossRefGoogle Scholar
19.Phillips, P.C.B. & Park, J.Y.. On the formulation of Wald tests of nonlinear restrictions. Econometrica, forthcoming.Google Scholar
20.Rao, C.R. & Mitra, S.K.. Generalized Inverses of Matrices and its Applications. New York: John Wiley, 1971.Google Scholar
21.Szroeter, J., Generalized Wald methods for testing nonlinear implicit and overidentifying restrictions. Econometrica 51 (1983): 335348.CrossRefGoogle Scholar
22.Trognon, A., Generalisation des tests asymptotiques au cas où le modèle est incomplètement spécifié. Cahiers du séminaire d'Econométrie 26 (1985): 93109.Google Scholar
23.White, H., Maximum likelihood estimation of misspecified models. Econometrica 50 (1982): 125.CrossRefGoogle Scholar
24.White, H., Asymptotic Theory for Econometricians. New York: Academic Press, 1984.Google Scholar
25.White, H., Tests de spécification dans les modèles dynamiques. Annales del'INSEE 59–60 (1985): 125181.CrossRefGoogle Scholar