Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T21:35:27.212Z Has data issue: false hasContentIssue false

EFFICIENT GMM ESTIMATION OF HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS WITH AUTOREGRESSIVE DISTURBANCES

Published online by Cambridge University Press:  13 August 2009

Lung-fei Lee*
Affiliation:
Ohio State University
Xiaodong Liu
Affiliation:
University of Colorado at Boulder
*
*Address correspondence to Lung-fei Lee, Department of Economics, Ohio State University, Columbus, OH 43210, USA; e-mail: [email protected].

Abstract

In this paper, we extend the GMM framework for the estimation of the mixed-regressive spatial autoregressive model by Lee(2007a) to estimate a high order mixed-regressive spatial autoregressive model with spatial autoregressive disturbances. Identification of such a general model is considered. The GMM approach has computational advantage over the conventional ML method. The proposed GMM estimators are shown to be consistent and asymptotically normal. The best GMM estimator is derived, within the class of GMM estimators based on linear and quadratic moment conditions of the disturbances. The best GMM estimator is asymptotically as efficient as the ML estimator under normality, more efficient than the QML estimator otherwise, and is efficient relative to the G2SLS estimator.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anselin, L. (1988) Spatial Econometrics: Methods and Models. Kluwer.CrossRefGoogle Scholar
Anselin, L. & Bera, A. (1998) Spatial dependence in linear regression models, with an introduction to spatial econometrics. In Ullah, A. and Giles, D.E.A. (eds), Handbook of Applied Economic Statistics. Marcel Dekker.Google Scholar
Anselin, L. & Smirnov, O. (1996) Efficient algorithms for constructing proper higher order spatial lag operators. Journal of Regional Science 36, 6789.CrossRefGoogle Scholar
Benirschka, M. & Binkley, J.K. (1994) Land price volatility in a geographically dispersed market. American Journal of Agricultural Economics 76, 185195.CrossRefGoogle Scholar
Blommestein, H.J. (1983) Specification and estimation of spatial econometric models: A discussion of alternative strategies for spatial economic modelling. Regional Science and Urban Economics 13, 250271.CrossRefGoogle Scholar
Blommestein, H.J. (1985) Elimination of circular routes in spatial dynamic regression equations. Regional Science and Urban Economics 15, 121130.CrossRefGoogle Scholar
Blommestein, H.J. & Koper, N.A. (1992) Recursive algorithms for the elimination of redundant paths in spatial lag operators. Journal of Regional Science 32, 91111.CrossRefGoogle Scholar
Breusch, T., Qian, H., Schmidt, P., & Wyhowski, D. (1999) Redundancy of moment conditions. Journal of Econometrics 91, 89111.CrossRefGoogle Scholar
Chambers, J.M., Cleveland, W.S., Kleiner, B., & Tukey, P. (1983) Graphical Methods for Data Analysis. Wadsworth and Brooks/Cole.Google Scholar
Davidson, R. & MacKinnon, J. (2004) Econometric Theory and Methods. Oxford University Press.Google Scholar
Dhrymes, P.J. (1978) Mathematics for Econometrics. Springer-Verlag.CrossRefGoogle Scholar
Horn, R. & Johnson, C. (1985) Matrix Analysis. Cambridge Univsersity Press.CrossRefGoogle Scholar
Huang, J.S. (1984) The autoregressive moving average model for spatial analysis. Australian Journal of Statistics 26, 169178.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbance. Journal of Real Estate Finance and Economics 17, 99121.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40, 509533.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (2001) On the asymptotic distribution of the moran i test statistic with applications. Journal of Econometrics 104, 219257.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (2004) Estimation of simultaneous systems of spatially interrelated cross sectional equations. Journal of Econometrics 118, 2750.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (2007a) Hac estimation in a spatial framework. Journal of Econometrics 140, 131154.CrossRefGoogle Scholar
Kelejian, H.H. & Prucha, I.R. (2007b) Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Working paper, University of Maryland.CrossRefGoogle Scholar
Kelejian, H.H., Prucha, I.R., & Yuzefovich, E. (2004) Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: Large and small sample results. In LeSage, J. and Pace, K. (eds.), Advances in Econometrics: Spatial and Spatiotemporal Econometrics. Elsevier.Google Scholar
Lee, L.F. (2001) Generalized method of moments estimation of spatial autoregressive processes. Manuscript, Ohio State University.Google Scholar
Lee, L.F. (2002) Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econometric Theory 18, 252277.CrossRefGoogle Scholar
Lee, L.F. (2003) Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econometric Reviews 22, 307335.CrossRefGoogle Scholar
Lee, L.F. (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial econometric models. Econometrica 72, 18991926.CrossRefGoogle Scholar
Lee, L.F. (2007a) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. Journal of Econometrics 137, 489514.CrossRefGoogle Scholar
Lee, L.F. (2007b) The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models. Journal of Econometrics 140, 155189.CrossRefGoogle Scholar
Lin, X. & Lee, L.F. (2006) GMM estimation of spatial autoregressive models with unknown heteroskedasticity. Working paper, Ohio State University.Google Scholar
Liu, X., Lee, L.F., & Bollinger, C. (2006) Improved efficient quasi maximum likelihood estimator of spatial autoregressive models. Working paper, Ohio State University.Google Scholar
Maddala, G.S. (1971) Generalized least squares with an estimated covariance matrix. Econometrica 39, 2333.CrossRefGoogle Scholar
Ord, J. (1975) Estimation methods for models of spatial interaction. Journal of the American Statistical Association 70, 120126.CrossRefGoogle Scholar
Tao, J. (2005). Spatial econometrics: Models, methods and applications. Ph.D. thesis, Ohio State University.Google Scholar
White, H. (1984). Asymptotic Theory for Econometricians. Academic Press.Google Scholar