Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:10:42.520Z Has data issue: false hasContentIssue false

Advanced EconometricsByTakeshi Amemiya, Harvard University Press, 1986

Published online by Cambridge University Press:  11 February 2009

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amemiya, T. Regression analysis when the dependent variable is truncated normal. Econometrica 41 (1973): 9971016.10.2307/1914031CrossRefGoogle Scholar
2. Amemiya, T. Qualitative response models: A survey. Journal of Economic Literature 19 (1981): 14831536.Google Scholar
3. Amemiya, T. Nonlinear regression models, in Griliches, Z. and Intriligator, M. D., eds., Handbook of Econometrics 1 (1983): 333389.10.1016/S1573-4412(83)01010-7CrossRefGoogle Scholar
4. Amemiya, T. Tobit models: A survey. Journal of Econometrics 24 (1984): 361.10.1016/0304-4076(84)90074-5CrossRefGoogle Scholar
5. Andrews, D.W.K. Consistency in nonlinear econometric models: A generic uniform law of large numbers. Cowles Foundation for Research in Economics, Yale University, Discussion Paper No. 790, 1986.Google Scholar
6. Begun, J., Hall, W., Huang, W., and Wellner, J.. Information and asymptotic efficiency in parametric-nonpaiametric models, Annals of Mathematical Statistics. 11 (1983): 432452.Google Scholar
7. Berndt, E. R., Hall, B. H., Hall, R. E., and Hausman, J. A.. Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement 3 (1974): 653665.Google Scholar
7a. Burguete, J. F., Gallant, A. R., and Souza, G.. On unification of the asymptotic theory of nonlinear econometric models. Econometric Reviews 1 (1982): 151190.10.1080/07311768208800012CrossRefGoogle Scholar
8. Cramer, H. Mathematical Methods of Statistics, Princeton: Princeton University Press, 1946.Google Scholar
9. Cox, D. R. Partial Likelihood, Biometrika 62 (1975): 269276.10.1093/biomet/62.2.269CrossRefGoogle Scholar
10. Durbin, J. Maximum likelihood estimation of the parameters of a system of simultaneous equations, Paper presented at the Copenhagen meeting of the Econometric Society, 1963.Google Scholar
11. Eicker, F. Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Annals of Mathematical Statistics 34 (1963): 447456.10.1214/aoms/1177704156CrossRefGoogle Scholar
12. Fisher, F. M. The Identification Problem in Econometrics. Huntington, Robert E. Krieger Publishing Company, 1966.Google Scholar
13. Hansen, L. P. Large sample properties of generalized method of moments estimators, Econometrica 50 (1982): 10291054.10.2307/1912775CrossRefGoogle Scholar
14. Hansen, L. P. and Singleton, K. J.. Generalized instrumental variable estimation of nonlinear rational expectations models. Econometrica 50 (1982): 12691286.10.2307/1911873CrossRefGoogle Scholar
15. Hausman, J. A., An instrumental variables approach to full information estimators for linear and certain nonlinear econometric models. Econometrica 43 (1975): 727738.10.2307/1913081CrossRefGoogle Scholar
16. Maddala, G. G. Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press, 1983.10.1017/CBO9780511810176CrossRefGoogle Scholar
17. Theil, H. Principles of Econometrics. New York: Wiley, 1971.Google Scholar
17a. Wald, A. Note on the consistency of maximum likelihood estimate. Annals of Mathematical Statistics 20 (1949): 595601.10.1214/aoms/1177729952CrossRefGoogle Scholar
18. White, H. A heteroskedasticity consistent covariance matrix and a direct test for heteroskedasticity. Econometrica 48 (1980): 817838.10.2307/1912934CrossRefGoogle Scholar