Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:30:11.178Z Has data issue: false hasContentIssue false

ADAPTIVE DENSITY ESTIMATION FOR GENERAL ARCH MODELS

Published online by Cambridge University Press:  17 July 2008

F. Comte*
Affiliation:
Université Paris Descartes
J. Dedecker
Affiliation:
Université Paris 6
M.L. Taupin
Affiliation:
IUT de Paris 5 and Université Paris Sud
*
Address correspondence to F. Comte, Université Paris Descartes, MAP5, UMR CNRS 8145, 45, rue des Saints-Pères, 75006 Paris, France; e-mail: [email protected]

Abstract

We consider a model Yt = σtηt in which (σt) is not independent of the noise process (ηt) but σt is independent of ηt for each t. We assume that (σt) is stationary, and we propose an adaptive estimator of the density of ln(σt2) based on the observations Yt. Under a new dependence structure, the τ-dependency defined by Dedecker and Prieur (2005, Probability Theory and Related Fields 132, 203–236), we prove that the rates of this nonparametric estimator coincide with the rates obtained in the independent and identically distributed (i.i.d.) case when (σt) and (ηt) are independent. The results apply to various linear and nonlinear general autoregressive conditionally heteroskedastic (ARCH) processes. They are illustrated by simulations applying the deconvolution algorithm of Comte, Rozenholc, and Taupin (2006, Canadian Journal of Statistics 34, 431–452) to a new noise density.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ango Nzé, P. (1992) Critères d'ergodicité de quelques modèles à représentation markovienne (Criteria of ergodicity for some models with a Markovian representation). Comptes Rendus de l'Academie des Sciences de Paris Série I Mathematiques 315, 13011304.Google Scholar
Ango Nzé, P. & Doukhan, P. (2004) Weak dependence: Models and applications to econometrics. Econometric Theory 20, 9951045.Google Scholar
Birgé, L. & Massart, P. (1998) Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4, 329375.CrossRefGoogle Scholar
Birgé, L. & Rozenholc, Y. (2006) How many bins should be put in a regular histogram. ESAIM Probability and Statistics 10, 2445 (electronic).CrossRefGoogle Scholar
Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307327.CrossRefGoogle Scholar
Bougerol, P. & Picard, N. (1992a) Stationarity of GARCH processes and of some nonnegative time series. Journal of Econometrics 52, 115127.CrossRefGoogle Scholar
Bougerol, P. & Picard, N. (1992b) Strict stationarity of generalized autoregressive processes. Annals of Probability 20, 17141730.CrossRefGoogle Scholar
Butucea, C. (2004) Deconvolution of supersmooth densities with smooth noise. Canadian Journal of Statistics 32, 181192.CrossRefGoogle Scholar
Butucea, C. & Matias, C. (2005) Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli 11, 309340.CrossRefGoogle Scholar
Butucea, C. & Tsybakov, A.B. (2008a) Sharp optimality in density deconvolution with dominating bias. I. Theory of Probability and Its Applications 52, 2439.CrossRefGoogle Scholar
Butucea, C. & Tsybakov, A.B. (2008b) Sharp optimality in density deconvolution with dominating bias. II. Theory of Probability and Its Applications 52, 237249.CrossRefGoogle Scholar
Carrasco, M. & Chen, X. (2000) β-mixing and moment properties of RCA models with application to GARCH(p,q). Comptes Rendus de l'Academie des Sciences de Paris Série I Mathématiques 331, 8590.Google Scholar
Carrasco, M. & Chen, X. (2002) Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 1739.CrossRefGoogle Scholar
Comte, F., Rozenholc, Y., & Taupin, M.-L. (2006) Penalized contrast estimator for adaptive density deconvolution. Canadian Journal of Statistics 34, 431452.CrossRefGoogle Scholar
Comte, F., Rozenholc, Y., & Taupin, M.-L. (2007) Finite sample penalization in adaptive density deconvolution. Journal of Statistical Computation and Simulation 77, 9771000.CrossRefGoogle Scholar
de Vries, C.G. (1991) On the relation between GARCH and stable processes. Journal of Econometrics 48, 313324.CrossRefGoogle Scholar
Dedecker, J. & Prieur, C. (2005) New dependence coefficients. Examples and applications to statistics. Probability Theory and Related Fields 132, 203236.CrossRefGoogle Scholar
Doukhan, P. (1994) Mixing: Properties and Examples. Lecture Notes in Statistics. Springer-Verlag.CrossRefGoogle Scholar
Doukhan, P., Teyssière, G., & Winant, P. (2006) A LARCH(∞) vector valued process. Lecture Notes in Statistics 187, 245258.CrossRefGoogle Scholar
Duan, J.-C. (1997) Augmented GARCH(p,q) process and its diffusion limit. Journal of Econometrics 79, 97127.CrossRefGoogle Scholar
Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9871007.CrossRefGoogle Scholar
Fan, J. (1991) On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics 19, 12571272.CrossRefGoogle Scholar
Giraitis, L., Kokoszka, P., & Leipus, R. (2000) Stationary ARCH models: Dependence structure and central limit theorem. Econometric Theory 16, 322.CrossRefGoogle Scholar
Klein, T. & Rio, E. (2005) Concentration around the mean for maxima of empirical processes. Annals of Probability 33, 10601077.CrossRefGoogle Scholar
Lacour, C. (2006) Rates of convergence for nonparametric deconvolution. Comptes Rendus de l'Academie des Sciences de Paris Série I Mathematik 342, 877882.Google Scholar
Lacour, C. (2008) Adaptive estimation of the transition density of a particular hidden Markov chain. Journal of Multivariate Analysis 99, 784814.CrossRefGoogle Scholar
Lee, O. & Shin, D.W. (2005) On stationarity and β-mixing property of certain nonlinear GARCH(p,q) models. Statistics and Probability Letters 73, 2535.CrossRefGoogle Scholar
Meyer, Y. (1990) Ondelettes et opérateurs I: Ondelettes. Actualités Mathématiques. Hermann, éditeurs des Sciences et des Arts.Google Scholar
Pensky, M. & Vidakovic, B. (1999) Adaptive wavelet estimator for nonparametric density deconvolution. Annals of Statistics 27, 20332053.CrossRefGoogle Scholar
van Es, B., Spreij, P., & van Zanten, H. (2005) Nonparametric volatility density estimation for discrete time models. Journal of Nonparametric Statistics 17, 237251.CrossRefGoogle Scholar
Zakoïan, J.-M. (1993) Modèle autoregressif à un seuil. Publications de l'Institut de Statistique de l'Université de Paris 37, 85113.Google Scholar