Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:18:25.680Z Has data issue: false hasContentIssue false

Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation

Published online by Cambridge University Press:  11 February 2009

Andrew A. Weiss
Affiliation:
University of Southern California

Abstract

We consider least absolute error estimation in a dynamic nonlinear model with neither independent nor identically distributed errors. The estimator is shown to be consistent and asymptotically normal, with asymptotic covariance matrix depending on the errors through the heights of their density functions at their medians (zero). A consistent estimator of the asymptotic covariance matrix of the estimator is given, and the Wald, Lagrange multiplier, and likelihood ratio tests for linear restrictions on the parameters are discussed. A Lagrange multiplier test for heteroscedasticity based upon the absolute residuals is analyzed. This will be useful whenever the heights of the density functions are related to the dispersions.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Amemiya, T.Two stage least absolute deviations estimators. Econometrica 50 (1982): 689711.CrossRefGoogle Scholar
2.An, H.-Z. & Chen, Z.. On convergence of LAD estimates in autoregression with infinite variance. Journal of Multivariate Analysis 12 (1982): 335345.CrossRefGoogle Scholar
3.Andrews, D.W.K.Consistency in nonlinear econometric models: A generic uniform law of large numbers. Econometrica 55 (1987): 14651471.CrossRefGoogle Scholar
4.Andrews, D.W.K.Laws of large numbers for dependent non-identically distributed random variables. Econometric Theory 4 (1988): 458467.CrossRefGoogle Scholar
5.Bassett, G. & Koenker, R.. Asymptotic theory of least absolute error regression. Journal of the American Statistical Assocation 73 (1978): 618622.CrossRefGoogle Scholar
6.Bickel, P.J.Using residuals robustly I: Tests for heteroscedasticity, nonlinearity. Annals of Statistics 6 (1978): 266291.CrossRefGoogle Scholar
7.Bloch, D.A. & Gastwirth, J.L.. On a simple estimate of the reciprocal of the density function. Annals of Mathematical Statistics 39 (1968): 10831085.CrossRefGoogle Scholar
8.Bloomfield, P. & Steiger, W.L.. Least Absolute Deviations. Stuttgart: Birkhauser, 1983.Google Scholar
9.Breusch, T.S. & Pagan, A.R.. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47 (1979): 12871294.CrossRefGoogle Scholar
10.Doob, J.L.Stochastic Processes. New York: Wiley, 1953.Google Scholar
11.Engle, R.F.Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (1982): 9871007.CrossRefGoogle Scholar
12.Engle, R.F.A general approach to Lagrange multiplier model diagnostics. Journal of Econometrics 20 (1982): 83104.CrossRefGoogle Scholar
13.Engle, R.F. & Bollerslev, T.. Modelling the persistence of conditional variances. Econometric Review 5 (1986): 150.CrossRefGoogle Scholar
14Gallant, A.R.Nonlinear Statistical Models. New York: Wiley, 1987.CrossRefGoogle Scholar
15Gallant, A.R. & White, H.. A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models. New York: Basil Blackwell, 1988.Google Scholar
16Glejser, H.A new test for heteroscedasticity. Journal of the American Statistical Association 64 (1969): 316323.CrossRefGoogle Scholar
17.Hannan, E.J. &Kanter, M.. Autoregressive processes with infinite variance. Journal of Applied Probability 14 (1977): 441445.CrossRefGoogle Scholar
18.Harter, H.L.Nonuniqueness of least absolute values regression. Communications in Statistics–Theory and Methods A6 (1977): 829838.CrossRefGoogle Scholar
19.Hausman, J.A.Specification tests in econometrics. Econometrica 46 (1978), 12511272.CrossRefGoogle Scholar
20Huber, P.J. The behavior of maximum likelihood estimates under nonstandard conditions. In Le Cam, L.M. and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1. Berkeley: University of California Press, 1967.Google Scholar
21.Judge, G.G. et al. The Theory and Practice of Econometrics (2nd ed.). New York: Wiley, 1985.Google Scholar
22.Koenker, R.A note on studentizing a test for heteroscedasticity. Journal of Econometrics 17(1981).CrossRefGoogle Scholar
23.Koenker, R. & Bassett, G.. Tests of linear hypotheses and /1, estimation. Econometrica 50 (1982): 15771583.CrossRefGoogle Scholar
24.Lukacs, E.Stochastic Convergence. Lexington: Heath, 1968.Google Scholar
25.Newey, W.K.Generalized method of moments specification testing. Journal of Econometrics 29 (1985): 229256.CrossRefGoogle Scholar
26.Newey, W.K. &Powell, J.L.. Asymmetric least squares estimation and testing. Econometrica 55 (1987): 819847.CrossRefGoogle Scholar
27.Oberhofer, W.The consistency of nonlinear regression minimizing the L 1-norm. Annals of Statistics 10 (1982): 316319.CrossRefGoogle Scholar
28.Pollard, D.Asymptotics for least absolute deviation regression estimators. Mimeograph, Department of Statistics, Yale Universtiy, 1988.Google Scholar
29.Powell, J.L.Least absolute deviations estimation for the censored regression model. Journal of Econometrics 25 (1984): 303325.CrossRefGoogle Scholar
30.Robinson, P.M.Nonparametric estimators for time series. Journal of Time Series Analysis 4 (1983): 185207.CrossRefGoogle Scholar
31.Ruppert, D. & Carroll, R.J.. Trimmed least squares estimation in the linear model. Journal of the American Statistical Association 75 (1980): 828838.CrossRefGoogle Scholar
32.Serfling, R.J.Approximation Theorems for Mathematical Statistics. New York: Wiley, 1980.CrossRefGoogle Scholar
33.Sheather, S.J. & Maritz, J.S.. An estimate of the asymptotic standard error of the sample median. Australian Journal of Statistics 25 (1983): 109122.CrossRefGoogle Scholar
34.Siddiqui, M.M.Distribution of quantiles in samples from a bivariate population. Journal of Research of the National Bureau of Standards B64 (1960): 145150.CrossRefGoogle Scholar
35.Silverman, B.W.Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.Google Scholar
36.Weiss, A.A.ARMA models with ARCH errors. Journal of Time Series Analysis 5 (1984): 129143.CrossRefGoogle Scholar
37.Weiss, A.A.Asymptotic theory for ARCH models: Estimation and testing. Econometric Theory 2 (1986): 107131.CrossRefGoogle Scholar
38.Weiss, A.A.A comparison of ordinary least squares and least absolute value estimation. Econometric Theory 4 (1988): 517527.CrossRefGoogle Scholar
39.Weiss, A.A. & Andersen, A.P.. Estimating time series models using the relevant forecast evaluation criterion. Journal of the Royal Statistical Society A147 (1984): 484487.CrossRefGoogle Scholar
40.White, H.Nonlinear regression on cross-section data. Econometrica 48 (1980): 721746.CrossRefGoogle Scholar
41.White, H.Maximum likelihood estimation of misspecified models. Econometrica 50 (1982): 125.CrossRefGoogle Scholar
42.White, H. & Domowitz, I.. Nonlinear regression with dependent observations. Econometrica 52 (1984): 143161.CrossRefGoogle Scholar