Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:06:15.835Z Has data issue: false hasContentIssue false

EMPIRICAL-LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR CONDITIONAL VARIANCE IN HETEROSKEDASTIC REGRESSION MODELS

Published online by Cambridge University Press:  30 April 2010

Ngai Hang Chan*
Affiliation:
The Chinese University of Hong Kong
Liang Peng
Affiliation:
Georgia Institute of Technology
Dabao Zhang
Affiliation:
Purdue University
*
*Address correspondence to Ngai Hang Chan, Department of Statistics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; email: [email protected].

Abstract

Fan and Yao (1998) proposed an efficient method to estimate the conditional variance of heteroskedastic regression models. Chen, Cheng, and Peng (2009) applied variance reduction techniques to the estimator of Fan and Yao (1998) and proposed a new estimator for conditional variance to account for the skewness of financial data. In this paper, we apply empirical likelihood methods to construct confidence intervals for the conditional variance based on the estimator of Fan and Yao (1998) and the reduced variance modification of Chen et al. (2009). Simulation studies and data analysis demonstrate the advantage of the empirical likelihood method over the normal approximation method.

Type
ARTICLES
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aїt-Sahalia, Y.A. (1996) Nonparametric pricing of interest rate derivative securities. Econometrica 64, 527–560.CrossRefGoogle Scholar
Andrews, D.W.K. (1997) A conditional Kolmogorov test. Econometrica 65, 1097–1028.CrossRefGoogle Scholar
Borkovec, M. (2001) Asymptotic behavior of the sample autocovariance and auto correlation function of the AR(1) process with ARCH(1) errors. Bernoulli 6, 847–872.CrossRefGoogle Scholar
Borkovec, M. & Klüppelberg, C. (2001) The tail of the stationary distribution of an autoregressive process with ARCH(1) errors. Annals of Applied Probability 11, 1220–1241.CrossRefGoogle Scholar
Chan, N.H. & Peng, L. (2005) Weighted least absolute deviations estimation for an AR(1) process with ARCH(1) errors. Biometrika 92, 477–484.CrossRefGoogle Scholar
Chen, L., Cheng, M., & Peng, L. (2009) Conditional variance estimation in heteroscedastik regression models. Journal of Statistical Planning and Inference 139, 236–245.CrossRefGoogle Scholar
Chen, S.X. & Cui, H. (2007) On the second order properties of empirical likelihood with moment restrictions. Journal of Econometrics 141, 492–516.CrossRefGoogle Scholar
Chen, S.X. & Gao, J. (2007) An adaptive empirical likelihood test for time series models. Journal of Econometrics 141, 950–972.CrossRefGoogle Scholar
Chen, S.X., Härdle, W., & Li, M. (2003) An empirical likelihood goodness-of-fit test for time series. Journal of Royal Statistical Society B 66, 63–78.Google Scholar
Chen, S.X. & Qin, Y. (2000) Empirical likelihood confidence intervals for local linear smoothers. Biometrika 87, 946–953.CrossRefGoogle Scholar
Cox, J.C., Ingersoll, S.E., & Ross, S.A. (1985) A theory of the term structure of interest rates. Econometrica 53, 385–407.CrossRefGoogle Scholar
Donald, S.G., Imbens, G.W., & Newey, W.K. (2003) Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics 117, 55–93.CrossRefGoogle Scholar
Fan, J. (2005) A selective overview of nonparametric methods in financial econometrics with discussions. Statistical Science 20, 317–337.Google Scholar
Fan, J. & Huang, L. (2001) Goodness-of-fit test for parametric regression models. Journal of the American Statistical Association 96, 640–652.CrossRefGoogle Scholar
Fan, J., Jiang, J., Zhang, C., & Zhou, Z. (2003) Time-dependent diffusion models for term structure dynamics. Statistica Sinica 13, 965–992.Google Scholar
Fan, J. & Yao, Q. (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85, 645–660.CrossRefGoogle Scholar
Fan, J. & Yao, Q. (2003) Nonlinear Time Series: Nonparametric and Parametric Methods. Springer-Verlag.CrossRefGoogle Scholar
Fan, J., Zhang, C., & Zhang, J. (2001) Generalized likelihood ratio statistics and Wilks phenomenon. Annals of Statistics 29, 153–193.CrossRefGoogle Scholar
Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Springer-Verlag.CrossRefGoogle Scholar
Härdle, W. & Mammen, E. (1993) Comparing nonparametric versus parametric regression fits. Annals of Statistics 21, 1926–1947.CrossRefGoogle Scholar
Horowitz, J.L. & Spokoiny, V.G. (2001) An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69, 599–632.CrossRefGoogle Scholar
Imbens, G.W. (2002) Generalized method of moments and empirical likelihood equations. Journal of Business and Economic Statistics 20, 493–506.CrossRefGoogle Scholar
Kitamura, Y. (1997) Empirical likelihood methods with weakly dependent processes. Annals of Statistics 25, 2084–2102.CrossRefGoogle Scholar
Kitamura, Y. (2001) Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 69, 1661–1672.CrossRefGoogle Scholar
Kitamura, Y., Tripathi, G., & Ahn, H. (2004) Empirical likelihood-based inference in conditional moment restriction models. Econometrica 72, 219–255.CrossRefGoogle Scholar
Kloeden, P.E. & Platen, E. (1999) Numerical Solution of Stochastic Differential Equations. Springer-Verlag.Google Scholar
Klüppelberg, C. & Pergamenchtchikov, S. (2004) The tail of the stationary distribution of a random coefficient AR(q) model. Annals of Applied Probability 14, 971–1005.CrossRefGoogle Scholar
Ling, S. (2004) Estimation and testing stationarity for double autoregressive models. Journal of Royal Statistical Society B 66, 63–78.CrossRefGoogle Scholar
Ling, S. (2007) A double AR(p) model: Structure and estimation. Statistica Sinica 17, 161–175.Google Scholar
Newey, W.K. & Smith, R.J. (2004) Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72, 219–255.CrossRefGoogle Scholar
Owen, A.B. (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75, 237–249.CrossRefGoogle Scholar
Owen, A.B. (1990) Empirical likelihood ratio confidence regions. Annals of Statistics 18, 90–120.CrossRefGoogle Scholar
Owen, A.B. (2001) Empirical Likelihood. Chapman and Hall.Google Scholar
Vasicek, O.A. (1977) An equilibrium characterization of the term structure. Journal of Financial Economics 5, 177–188.CrossRefGoogle Scholar
Wang, L. & Van Keilegom, I. (2007) Nonparametric test for the form of parametric regression with time series errors. Statistica Sinica 17, 369–386.Google Scholar
Yu, K. & Jones, M.C. (2004) Likelihood-based local linear estimation of the conditional variance function. Journal of American Statistical Association 99, 139–144.CrossRefGoogle Scholar