No CrossRef data available.
Article contents
The Mediating Morphism of the Multilinear Optimal Map
Published online by Cambridge University Press: 28 May 2015
Abstract
In this short note, we study a relation between the tensor product of matrices and a multilinear map defined by the optimal operator. In this particular case, the linear transform (mediating morphism) hidden in the abstract definition of the general tensor product can be determined explicitly.
- Type
- Research Article
- Information
- Copyright
- Copyright © Global-Science Press 2014
References
[1]Chan, R., Jin, X., and Yeung, M., The circulant operator in the Banach algebra of matrices, Linear Algebra Appl. 149, 41–53 (1991).CrossRefGoogle Scholar
[2]Chan, R. and Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38, 427–482 (1996).Google Scholar
[3]Chan, T., An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat. Comput. 9, 766–771 (1988).CrossRefGoogle Scholar
[4]Cheng, C., Jin, X., Vong, S., and Wang, W., Anote on spectra of optimal and superoptimal preconditioned matrices, Linear Algebra Appl. 422, 482–485 (2007).CrossRefGoogle Scholar
[5]Ching, W., Iterative Methods for Queuingand Manufacturing Systems, Springer-Verlag, London, 2001.Google Scholar
[6]Gilliam, D., Martin, C., and Lund, J., Analytic and numerical aspects of the observation of the heat equation, Proceedings of the 26th IEEE Conference on Decision and Control, pp. 975–976, 1987.Google Scholar
[7]Greub, W., Multilinear Algebra, 2nd Edition, Springer-Verlag, New York, 1978.CrossRefGoogle Scholar
[8]Jin, X., Preconditioning Techniques for Toeplitz Systems, Higher Education Press, Beijing, 2010.Google Scholar
[9]Jin, X., A fast algorithm for block Toeplitz systems with tensor structure, Appl. Math. Comput. 73, 115–124 (1995).Google Scholar
[10]Jin, X. and Wei, Y., A survey and some extensions of T. Chan's preconditioner, Linear Algebra Appl. 428, 403–412 (2008).CrossRefGoogle Scholar
[11]Ng, M., Iterative Methods for Toeplitz Systems, Oxford University Press, Oxford, 2004.CrossRefGoogle Scholar
[13]Strang, G., A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74, 171–176 (1986).CrossRefGoogle Scholar
[14]Tyrtyshnikov, E., Optimal and super-optimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13, 459–473 (1992).CrossRefGoogle Scholar