Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:43:37.407Z Has data issue: false hasContentIssue false

Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction

Published online by Cambridge University Press:  28 May 2015

Weizhu Bao*
Affiliation:
Department of Mathematics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
Yongyong Cai*
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 117543
*
Corresponding author. Email: [email protected]
Corresponding author. Email: [email protected]
Get access

Abstract

In this paper, we prove existence and uniqueness results for the ground states of the coupled Gross-Pitaevskii equations for describing two-component Bose-Einstein condensates with an internal atomic Josephson junction, and obtain the limiting behavior of the ground states with large parameters. Efficient and accurate numerical methods based on continuous normalized gradient flow and gradient flow with discrete normalization are presented, for computing the ground states numerically. A modified backward Euler finite difference scheme is proposed to discretize the gradient flows. Numerical results are reported, to demonstrate the efficiency and accuracy of the numerical methods and show the rich phenomena of the ground sates in the problem.

Type
Research Article
Copyright
Copyright © Global-Science Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anderson, M. H., Ensher, J. R., Matthewa, M. R., Wieman, C. E. and Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), pp. 198201.Google Scholar
[2]Bao, W., Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model. Simul., 2 (2004), pp. 210236.Google Scholar
[3]Bao, W., Analysis and efficient computation for the dynamics of two-component Bose-Einstien condensates, Contemporary Math., 473 (2008), pp. 126.Google Scholar
[4]Bao, W. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), pp. 16741697.Google Scholar
[5]Bao, W., Jaksch, D. and Markowich, P A., Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187 (2003), pp. 318342.Google Scholar
[6]Bao, W. and Lim, F. Y., Computing ground states ofspin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput., 30 (2008), pp. 19251948.Google Scholar
[7]Bao, W. and Wang, H., A mass and magnetization conservative and energy diminishing numerical method for computing ground state ofspin-1 Bose-Einstein condensates, SIAM J. Numer. Anal., 45 (2007), pp. 21772200.Google Scholar
[8]Bradley, C. C., Sackett, C. A., Tollett, J. J. and Hulet, R. G., Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), pp. 16871690.Google Scholar
[9]Cafferelli, L. and Lin, F. H., An optimal partition problem for eigenvalues, J. Sci. Comput., 31 (2007), pp. 518.Google Scholar
[10]Caliari, M. and Squassina, M., Location andphase segregation of ground and excited states for 2D Gross-Pitaevskii systems, Dynamics of PDE, 5 (2008), pp. 117137.Google Scholar
[11]Caliari, M., Ostermann, A., Rainer, S. and Thalhammer, M., A minimisation approach for computing the ground state of Gross-Pitaevskii systems, J. Comput. Phys., 228 (2009), pp. 349360.Google Scholar
[12]Chang, S. M., Lin, W. W. and Shieh, S. F., Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate, J. Comput. Phys., 202 (2005), pp. 367390.Google Scholar
[13]Chang, S. M., Lin, C. S., Lin, T. C. and Lin, W. W., Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Physica D, 196 (2004), pp. 341361.Google Scholar
[14]Chiofalo, M. L., Succi, S. and Tosi, M. P., Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62 (2000), pp. 74387444.Google Scholar
[15]Davis, K. B., Mewes, M. O., Andrews, M. R., Van Druten, N. J., Durfee, D. S., Kurn, D. M. and Ketterle, W., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), pp. 39693973.Google Scholar
[16]Du, Q. and Lin, F. H., Numerical approximations of a norm preserving gradient flow and applications to an optimal partition problem, Nonlinearity, 22 (2009), pp. 6783.Google Scholar
[17]Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. and Cornell, E. A., Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), pp 15391542.Google Scholar
[18]Hall, D. S., Matthews, M. R., Wieman, C. E. and Cornell, E. A., Measurements of relative phase in two-component Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), pp 15431546.Google Scholar
[19]Ho, T. L. and Shenoy, V. B., Binary mixtures of Bose condensates of alkali atoms, Phys. Rev. Lett., 77 (1996), pp. 32763279.Google Scholar
[20]Jaksch, D., Gardiner, S. A., Schulze, K., Cirac, J. I. and Zoller, P., Uniting Bose-Einstein condensates in optical resonators, Phys. Rev. Lett., 86 (2001), pp. 47334736.Google Scholar
[21]Kasamatsu, K. and Tsubota, M., Nonlinear dynamics for vortex formation in a rotating Bose-Einstein condensate, Phys. Rev. A, 67 (2003), article 033610.CrossRefGoogle Scholar
[22]Kasamatsu, K., Tsubota, M. and Ueda, M., Vortex phase diagram in rotating two-component Bose-Einstein condensates, Phys. Rev. Lett., 91 (2003), article 150406.Google Scholar
[23]Lieb, E. H., Seiringer, R. and Yngvason, J., Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energyfunctional, Phy. Rev. A, 61 (2000), article 043602.Google Scholar
[24]Lieb, E. H. and Solovej, J. P, Ground state energy of the two-component charged Bose gas, Comm. Math. Phys., 252 (2004), pp. 485534.Google Scholar
[25]Lin, T. -C. and Wei, J., Ground state of N coupled nonlinear Schrödinger Equations in ℝn, n ≤ 3, Comm. Math. Phys., 255 (2005), pp. 629653.Google Scholar
[26]Lin, T. -C. and Wei, J., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Diff. Equ., 229 (2006), pp. 538569.Google Scholar
[27]Liu, Z., Two-component Bose-Einstein condensates, J. Math. Anal. Appl., 348 (2008), pp. 274285.Google Scholar
[28]Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. and Wieman, C. E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 78 (1997), pp. 586589.Google Scholar
[29]Pitaevskii, L. P. and Stringari, S., Bose-Einstein condensation, Clarendon Press, 2003.Google Scholar
[30]Schneider, J. and Schenzle, A., Output from an atom laser: theory vs. experiment, Appl. Phys. B, 69 (1999), pp. 353356.Google Scholar
[31]Schneider, J. and Schenzle, A., Investigations of a two-mode atom-laser model, Phys. Rev. A, 61 (2000), article 053611.Google Scholar
[32]Schneider, B. I. and Feder, D. L., Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap, Phys. Rev. A, 59 (1999), pp. 22322242.Google Scholar
[33]Simon, L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math., 118 (1983), pp. 525571.Google Scholar
[34]Stamper-Kurn, D. M., Andrews, M. R., Chikkatur, A. P., Inouye, S., Miesner, H.-J., Stenger, J. and Ketterle, W., Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett., 80 (1998), pp. 20272030.Google Scholar
[35]Wang, H., Numerical simulations on stationary states for rotating two-component Bose-Einstein condensates, J. Sci. Comput., 38 (2009), pp. 149163.Google Scholar
[36]Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phy. 87 (1983), pp. 567576.Google Scholar
[37]Williams, J., Walser, R., Cooper, J., Cornell, E., and Holland, M., Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate, Phys. Rev. A, 59 (1999), article R31-R34.Google Scholar
[38]Zhang, Y., Bao, W. and Li, H., Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation, Physica D, 234 (2007), pp. 4969.Google Scholar