Published online by Cambridge University Press: 07 September 2017
We discuss an efficient preconditioner and iterative numerical method to solve large complex linear algebraic systems of the form (W + iT)u = c, where W and T are symmetric matrices, and at least one of them is nonsingular. When the real part W is dominantly stronger or weaker than the imaginary part T, we propose a block multiplicative (BM) preconditioner or its variant (VBM), respectively. The BM and VBM preconditioned iteration methods are shown to be parameter-free, in terms of eigenvalue distributions of the preconditioned matrix. Furthermore, when the relationship between W and T is obscure, we propose a new preconditioned BM method (PBM) to overcome this difficulty. Both convergent properties of these new iteration methods and spectral properties of the corresponding preconditioned matrices are discussed. The optimal value of iteration parameter for the PBM method is determined. Numerical experiments involving the Helmholtz equation and some other applications show the effectiveness and robustness of the proposed preconditioners and corresponding iterative methods.