No CrossRef data available.
Article contents
An Efficient and Stable Spectral-Element Method for Acoustic Scattering by an Obstacle
Published online by Cambridge University Press: 28 May 2015
Abstract
A spectral-element method is developed to solve the scattering problem for time-harmonic sound waves due to an obstacle in an homogeneous compressible fluid. The method is based on a boundary perturbation technique coupled with an efficient spectral-element solver. Extensive numerical results are presented, in order to show the accuracy and stability of the method.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Global-Science Press 2013
References
[1]Bergmann, P.G., The wave equation in a medium with a variable index of refraction, J. Acoust. Soc. Am. 17, 329–333 (1946).Google Scholar
[2]Bruno, O.P. and Reitich, F., Solution of a boundary value problem for the Helmholtz equation via variation of the boundary into the complex domain, Proc. Roy. Soc. Edinburgh A – Mathematics 122, 317–340 (1992).Google Scholar
[3]Colton, D.L. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer Verlag (1998).CrossRefGoogle Scholar
[4]Fang, Q., Nicholls, D.P and Shen, J., A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering. J. Comput. Phys. 224, 1145–1169 (2007).Google Scholar
[5]He, Y., Nicholls, D.P. and Shen, J., An efficient and stable spectral method for electromagnetic scattering from a layered periodic structure, J. Comput. Phys. 231, 3007–3022 (2012).Google Scholar
[6]Martin, P.A., Acoustic scattering by inhomogeneous spheres, J. Acoust. Soc. Am. 111, 2013–2018 (2002).Google Scholar
[7]Nicholls, D.P. and Nigam, N., Exact non-reflecting boundary conditions on general domains, J. Comput. Phys. 194, 278–303 (2004).Google Scholar
[8]Nicholls, D.P. and Reitich, F., A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edinburgh A – Mathematics 131, 1411–1434 (2001).Google Scholar
[9]Nicholls, D.P. and Reitich, F., Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators, J. Comput. Phys. 170, 276–298 (2001).Google Scholar
[10]Nicholls, D.P. and Reitich, F., Analytic continuation of Dirichlet-Neumann operators, Numer. Math. 94, 107–146 (2003).Google Scholar
[11]Nicholls, D.P. and Reitich, F., Shape deformations in rough-surface scattering: Cancellations, conditioning, and convergence, JOSA A 21, 590–605 (2004).CrossRefGoogle ScholarPubMed
[12]Nicholls, D.P. and Reitich, F., Shape deformations in rough-surface scattering: Improved algorithms, JOSA A 21, 606–621 (2004).Google Scholar
[13]Nicholls, D.P. and Shen, J., A stable high-order method for two-dimensional bounded-obstacle scattering, SIAM J. Sci. Comput. 28, 1398–1419 (2006).Google Scholar
[14]Nicholls, D.P and Shen, J., A rigorous numerical analysis of the transformed field expansion method, SIAM J. Numer. Anal. 47, 2708–2723 (2009).Google Scholar
[15]Rayleigh, Lord, On the dynamical theory of gratings, Soc. London Ser. A 79, 399–416 (1907).Google Scholar
[16]Reitich, F. and Tamma, K.K., State-of-the-art, trends, and directions in computational electromagnetics, Comput. Model. Engr. Sci. 5, 287–294 (2004).Google Scholar
[17]Rice, S.O., Reflection of electromagnetic waves from slightly rough surfaces, Comm. Pure Appl. Math. 4, 351–378 (1951).CrossRefGoogle Scholar
[18]Shen, J., Efficient Spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput. 15, 1489–1508 (1994).Google Scholar
[19]Shen, J., Efficient Spectral-Galerkin method II. Direct solvers of second-and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput. 16, 74–87 (1995).Google Scholar
[20]Shen, J., Efficient Spectral-Galerkin methods III: Polar and cylindrical geometries, SIAM J. Sci. Comput. 18, 1583–1604 (1997).Google Scholar
[21]Shen, J., Efficient Spectral-Galerkin methods IV. Spherical geometries, SIAM J. Sci. Comput. 20, 1438–1455 (1999).CrossRefGoogle Scholar
[22]Shen, J. and Wang, L.-L., Analysis of a Spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal. 45, 1954–1978 (2007).Google Scholar
[23]Warnick, K.F. and Chew, W.C., Numerical simulation methods for rough surface scattering, Waves in Random Media 11, 1–30 (2001).Google Scholar