Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:17:47.709Z Has data issue: false hasContentIssue false

Water contents of felsic melts: application to the rheological properties of granitic magmas

Published online by Cambridge University Press:  03 November 2011

F. Holtz
Affiliation:
Francois Holtz. Bruno Scaillet and Michel Pichavant, Centre de Recherches sur la Synthèse et la Chimie des Minéraux, CRSCM-CNRS, 1A, rue de la Férollerie, 45071 Orleans, France
B. Scaillet
Affiliation:
Francois Holtz. Bruno Scaillet and Michel Pichavant, Centre de Recherches sur la Synthèse et la Chimie des Minéraux, CRSCM-CNRS, 1A, rue de la Férollerie, 45071 Orleans, France
H. Behrens
Affiliation:
Harald Behrens and Frank Schulze. Institut für Mineralogie, Universität Hannover, Welfengarten 1, 30167 Hanover, Germany
F. Schulze
Affiliation:
Harald Behrens and Frank Schulze. Institut für Mineralogie, Universität Hannover, Welfengarten 1, 30167 Hanover, Germany
M. Pichavant
Affiliation:
Francois Holtz. Bruno Scaillet and Michel Pichavant, Centre de Recherches sur la Synthèse et la Chimie des Minéraux, CRSCM-CNRS, 1A, rue de la Férollerie, 45071 Orleans, France

Abstract:

New experimental determinations of water solubility in haplogranitic melts (anhydrous compositions in the system Qz-Ab-Or and binary joins) and of the viscosity of hydrous Qz28Ab38Or34 melts (normative proportions) and natural peraluminous leucogranitic melt (Gangotri, High Himalaya) are used to constrain the evolution of viscosity of ascending magmas, depending on their P-T paths.

At constant pressure, in the case of fluid-absent melting conditions, with water as the main volatile dissolved in the melts, the viscosity of melts generated from quartzo-feldspathic protoliths is lower at low temperature than at, high temperature (difference of 1-2 log units between 700 and 900°C). This is due to the higher water contents of the melts at low temperature than at high temperature and to the fact that decreasing temperature does not counterbalance the effect of increasing melt water content. In ascending magmas generated from crustal material the magma viscosity does not change significantly whatever the P-T path followed (i.e. path with cooling and crystallisation; adiabatic path with decompression melting) as long as the crystal fraction is low enough to assume a Newtonian behaviour (30-50% crystals, depending on size and shape). Comparison of the properties of natural and synthetic systems suggests that both water solubility and the viscosity of multicomponent natural felsic melts (with less than 30-35% normative Qz) can be extrapolated from those of the equivalent synthetic feldspar melts.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D. R.&Vaillancourt, J. 1995. The low viscosities of F + H2O bearing granitic melts and implications for melt extraction and transport. EARTH PLANET SCI LETT 132, 199211.CrossRefGoogle Scholar
Behrens, H. 1995. Measurements of solubilities of water in melts of albitic and orthoclasic compositions. EUR J MINERAL 7, 905–20.CrossRefGoogle Scholar
Burnham, C. W. 1964. Viscosity of a water-rich pegmatite. GEOL SOC AM SPEC PAP 76, 26.Google Scholar
Burnham, C. W. 1975. Water and magmas: a mixing model. GEOCHIM COSMOCHIM ACTA 39, 1077–84.CrossRefGoogle Scholar
Clemens, J. D.&Mawer, C. K. 1992. Granitic transport by fracture propagation. TECTONOPHYSICS 204, 339–60.CrossRefGoogle Scholar
Dingwell, D. B. 1987. Melt viscosities in the system NaAlSi3O8-H2O-F2O−1. In Mysen, B.O. (ed.) Magmatic processes: physicochemical principles. GEOCHEM SOC SPEC PUBL 1, 423–33.Google Scholar
Dingwell, D. B.&Webb, S. L. 1990. Relaxation in silicate melts. EUR J MINERAL 2, 427–49.CrossRefGoogle Scholar
Dingwell, D. B., Harris, D. M.&Scarfe, C. M. 1984. The solubility of H2O in melts in the system SiO2-Al2O3-Na2O-K2O at 1 to 2 kbars. J GEOL 92, 387–95.CrossRefGoogle Scholar
Dingwell, D. B., Bagdassarov, N. S., Bussod, G. Y.&Webb, S. L. 1993. Magma rheology. In Luth, R.W. (ed.) Experiments at high pressure and applications to the Earth's mantle. MINERAL ASSOC CAN SHORT COURSE 21, 131–96.Google Scholar
Friedman, I., Long, W.&Smith, R. L. 1963. Viscosity and water content of rhyolite glass. J GEOPHYS RES 68, 6523–35.CrossRefGoogle Scholar
Goranson, R. W. 1931. The solubility of water in granitic magmas. AM J SCI 22, 481502.CrossRefGoogle Scholar
Hamilton, D. L.&Oxtoby, S. 1986. Solubility of water in albite melt determined by the weight-loss method. J GEOL 94, 626–30.CrossRefGoogle Scholar
Hamilton, D. L..Burnham, C. W.&Osborn, E. F. 1964. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J PETROL 5, 2139.CrossRefGoogle Scholar
Holtz, F.&Johannes, W. 1994. Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. LITHOS 32, 149–59.CrossRefGoogle Scholar
Holtz, F., Behrens, H., Dingwell, D. B.&Taylor, R. P. 1992. Water solubility in aluminosilicate melts of haplogranitic compositions at 2 kbar. CHEM GEOL 96, 289302.CrossRefGoogle Scholar
Holtz, F., Dingwell, D. B.&Behrens, H. 1993. Effects of F, B2O3, and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. CONTRIB MINERAL PETROL 113, 492501.CrossRefGoogle Scholar
Holtz, F., Behrens, H., Dingwell, D. B.&Scaillet, B. 1994. Influence of aluminum on water solubility and structure of granitic melts. TERRA ABSTR 1 (6), 24.Google Scholar
Holtz, F., Behrens, H., Dingwell, D. B.&Johannes, W. 1995. Water solubility in haplogranitic melts. Compositional, pressure and temperature dependence. AM MINERAL 80, 94108.CrossRefGoogle Scholar
Jahns, R. H.&Burnham, C. W. 1958. Experimental studies of pegmatite genesis: the solubility of water in granitic melts. GEOL SOC AM BULL 69, 1544–55.Google Scholar
Kohn, S. C, Dupree, R.&Smith, M. E. 1989. A multinuclear magnetic resonance study of the structure of hydrous albite glasses. GEOCHIM COSMOCHIM ACTA 53, 2925–35.CrossRefGoogle Scholar
Kushiro, I. 1978. Viscosity and structural changes of albite (NaAlSi3O8) melt at high pressures. EARTH PLANET SCI LETT 41, 8790.CrossRefGoogle Scholar
Lejeune, A. M.&Richet, P. 1995. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J GEOPHYS RES 100, 4215–29.CrossRefGoogle Scholar
Linnen, R. L..Pichavant, M.&Holtz, F. The combined effects of and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. GEOCHIM COSMOCHIM ACTA, in press.Google Scholar
Marsh, B. D. 1981. On the cristallinity, probability of occurrence, and rheology of lava and magma. CONTRIB MINERAL PETROL 78, 8598.CrossRefGoogle Scholar
Nowak, M.&Behrens, H. 1995. The speciation of water in granitic glasses and melts determined by in situ near-infrared spectroscopy. GEOCHIM COSMOCHIM ACTA 59, 3445–50.CrossRefGoogle Scholar
Oxtoby, S.&Hamilton, D. L. 1978a. The discrete association of water with Na2O and SiO2 in NaAl silicate melts. CONTRIB MINERAL PETROL 66, 185–8.CrossRefGoogle Scholar
Oxtoby, S.&Hamilton, D. L. 1978b. Calculation of the solubility of water in granitic melts. In: McKenzie, W.S. (ed.) Progress in experimental petrology. NAT ENVIRON RES COUN PUB SER D 11, 3740.Google Scholar
Paillat, O., Elphick, S. C.&Brown, W. L. 1992. The solubility of water in NaAlSi3O8 melts: a re-examination of Ab-H2O phase relationships and critical behaviour at high pressures. CONTRIB MINERAL PETROL 112, 490500.CrossRefGoogle Scholar
Persikov, E. S. 1991. The viscosity of magmatic liquids: experiment, generalized patterns. A model for calculation and prediction. Applications. in Perchuk, L. L.&Kushiro, I. (eds.) ADV PHYS CHEM 9, 140.Google Scholar
Persikov, E. S., Zharikov, V. A., Bukhtiyarov, P. G.&Polskoy, S. F. 1990. The effects of volatiles on the properties of magmatic melts. EUR J MINERAL 2, 621–42.CrossRefGoogle Scholar
Petford, N., Kerr, R. C.&Lister, J. R. 1993. Dike transport of granitoid magmas. GEOLOGY 21, 845–8.2.3.CO;2>CrossRefGoogle Scholar
Pichavant, M., Holtz, F.&McMillan, P. 1992. Phase relations and compositional dependence of water solubility in quartz-feldspar melts. CHEM GEOL 96, 303–19.CrossRefGoogle Scholar
Pinkerton, H.&Stevenson, R. J. 1992. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J VOLCANOL GEOTHERM RES 53, 4766.CrossRefGoogle Scholar
Richet, P., Lejeune, M., Holtz, F.&Roux, J. Water and the viscosity of andesite melts. CHEM GEOL, in press.Google Scholar
Romano, C, Dingwell, D. B.&Behrens, H. 1995. The temperature dependence of the speciation of water in NaAlSi3O8-KAlSi3O8 melts: an application of fictive temperatures derived from synthetic fluid-inclusions. CONTRIB MINERAL PETROL 122, 110.CrossRefGoogle Scholar
Romano, C, Dingwell, D. B., Behrens, H.&Dolfi, D. 1996. Solubility of water along the joins NaAlSi3O8-KAlSi3O8, NaAlSi3O8-LiAlSi3O8, LiAlSi3O8-KAlSi3O8. AM MINERAL 81, 452–61.CrossRefGoogle Scholar
Scaillet, B., Pêcher, A., Rochette, P.&Champenois, M. 1995a. The Gangotri granite (Garhwal Himalaya): laccolithic emplacement in an extending collisional belt. J GEOPHYS RES 100, 585607.CrossRefGoogle Scholar
Scaillet, B., Pichavant, M.&Roux, J. 1995b. Experimental crystallization of leucogranite magmas. J PETROL 36, 663705.CrossRefGoogle Scholar
Scaillet, B., Holtz, F.&Pichavant, M. 1996. Rheological properties of granitic magmas in their crystallization range. in Bouchez, J.L., Hutton, D.W.H.&Stephens, W.S. (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, 122.Google Scholar
Scaillet, B., Holtz, F., Pichavant, M.&Schmidt, M. O. E. The viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent. J GEOPHYS RES, in press.Google Scholar
Schulze, F., Behrens, H., Holtz, F., Roux, J.&Johannes, W. The influence of water on the viscosity of a haplogranitic liquid. AM MINERAL, in press.Google Scholar
Shaw, H. R. 1963. Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J GEOPHYS RES 68, 6337–42.CrossRefGoogle Scholar
Shaw, H. R. 1972. Viscosities of magmatic liquids: an empirical method of prediction. AM J SCI 272, 870–93.CrossRefGoogle Scholar
Silver, L. A.&Stolper, E. M. 1985. A thermodynamic model for hydrous silicate melts. J GEOL 93, 161–78.CrossRefGoogle Scholar
Silver, L. A., Ihinger, P. D.&Stolper, E. M. 1990. The influence of bulk composition on the speciation of water in silicate glasses. CONTRIB MINERAL PETROL 104, 142–62.CrossRefGoogle Scholar
Tuttle, O. F.&Bowen, N. L, 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. GEOL SOC AM MEM 74.Google Scholar
Urbain, G., Bottinga, Y.&Richet, P. 1982. Viscosity of liquid silica, silicates and aluminosilicates. GEOCHIM COSMOCHIM ACTA 46, 1061–72.CrossRefGoogle Scholar
Voigt, D. E., Bodnar, R. J.&Blencoe, J. G. 1981. Water solubility in melts of alkali feldspar composition at 5 kbar, 950°C. EOS, TRANS AM GEOPHYS UNION 62, 428.Google Scholar
White, B. S.&Montana, A. 1990. The effect of H2O and CO2 on the viscosity of sanidine liquid at high pressures. J GEOPHYS RES 95, 15683–93.CrossRefGoogle Scholar