Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T22:12:58.856Z Has data issue: false hasContentIssue false

Tracking natural organic carbon in the River Clyde, UK, using glycerol dialkyl glycerol tetraethers

Published online by Cambridge University Press:  13 November 2018

Abstract

Surface sediments from a 100-km stretch of the River Clyde, UK, and its estuary were analysed for glycerol dialkyl glycerol tetraethers (GDGTs) to track the downstream changes in the source of organic matter (OM) and to evaluate the impact of urbanisation. Bacterial membrane lipids, named branched GDGTs (brGDGTs), produced in soils and rivers ranged from 1.6 to 58μgg−1 organic carbon (OC) and the isoprenoid GDGT crenarchaeol, mainly from marine archaea, ranged from 0.01 to 42μgg−1 OC. The highest brGDGT concentrations were in the upper river, in Glasgow city and in the outer estuary, suggesting higher soil-derived OM input. By contrast, crenarchaeol concentrations gradually increased from the tidal weir in Glasgow towards the sea. This spatial distribution of the tetraethers was reflected in the branched and isoprenoid tetraether (BIT) index, a proxy for soil versus marine carbon. The highest BIT values (1.0) occurred upstream, estuarine values ranged from 0.9 to 0.6 and the lowest values (0.4) were found in the outer estuary. An independent proxy for soil-derived OM, stable carbon isotope (δ13C) values, showed a comparable decrease in terrigenous OM contribution towards the sea, but was more variable compared to the BIT. Conversely, carbon/nitrogen (C/N) showed a constant trend, suggesting that it is not a reliable indicator of OM source in the Clyde. Neither BIT, δ13C nor C/N were able to reflect the input of urban effluents from Glasgow.

Type
Articles
Copyright
Copyright © British Geological Survey UKRI 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Buckles, L. K., Weijers, J. W. H., Tran, X.-M., Waldron, S. & Sinninghe Damsté, J. S. 2014. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry. Biogeosciences 11, 55395563.Google Scholar
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A. & Sinninghe Damste, J. S. 2014. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochimica et Cosmochimica Acta 125, 476491.Google Scholar
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A., Streletskaya, I. D., Vasiliev, A. A. & Sinninghe Damsté, J. S. 2015. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): implications for the use of brGDGT-based proxies in coastal marine sediments. Geochimica et Cosmochimica Acta 165, 200225.Google Scholar
DeLong, E. F., King, L. L., Massana, R., Cittone, H., Murray, A., Schleper, C. & Wakeham, S. G. 1998. Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Applied and Environmental Microbiology 64, 1986.Google Scholar
Edgar, P. J., Davies, I. M., Hursthouse, A. S. & Matthews, J. E. 1999. The biogeochemistry of polychlorinated biphenyls (PCBs) in the Clyde: distribution and source evaluation. Marine Pollution Bulletin 38, 486496.Google Scholar
Engelhart, S. E., Horton, B. P., Vane, C. H., Nelson, A. R., Witter, R. C., Brody, S. R. & Hawkes, A. D. 2013. Modern foraminifera, δ13C and bulk geochemistry of central Oregon tidal marshes and their application in palaeoseismology. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 1327.Google Scholar
Finlay, J. C. & Kendall, C. 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Michener, R. & Lajtha, K. (eds) Stable isotopes in ecology and environmental science, 2nd edn, 283333. Oxford: Blackwell Publishing.Google Scholar
Freymond, C. V., Peterse, F., Fischer, L. V., Filip, F., Giosan, L. & Eglinton, T. I. 2017. Branched GDGT signals in fluvial sediments of the Danube River Basin: method comparison and longitudinal evolution. Organic Geochemistry 103, 8896.Google Scholar
Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204247.Google Scholar
Heip, C. H. R. & Herman, P. M. J. 1995. Major biological processes in European tidal estuaries. Dordrecht: Kluwer Academic Publishers.Google Scholar
Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Damste, J. S. S. & Schouten, S. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters 224, 107116.Google Scholar
Kemp, A. C., Vane, C. H., Horton, B. P. & Culver, S. J. 2010. Stable carbon isotopes as potential sea-level indicators in salt marshes, North Carolina, USA. Holocene 20, 623636.Google Scholar
Khan, N. S., Horton, B. P., McKee, K. L., Jerolmack, D., Falcini, F., Enache, M. D. & Vane, C. H. 2013. Tracking sedimentation from the historic 2011 Mississippi River Flood in Louisiana Deltaic wetlands. Geology 41, 391394.Google Scholar
Khan, S. N., Vane, C. H., Horton, B. P., Hillier, C., Riding, J. B. & Kendrick, C. 2015. The use of bulk stable carbon isotope geochemistry in the reconstruction of Holocene relative sea levels and paleoenvironments, Thames UK. Journal of Quaternary Science 30, 417433.Google Scholar
Kim, J. H., Ludwig, W., Schouten, S., Kerherve, P., Herfort, L., Bonnin, J. & Damste, J. S. S. 2007. Impact of flood events on the transport of terrestrial organic matter to the ocean: A study of the Tet River (SW France) using the BIT index. Organic Geochemistry 38, 15931606.Google Scholar
Kim, J. H., Zell, C., Moreira-Turcq, P., Perez, M. A. P., Abril, G., Mortillaro, J. M. & Damste, J. S. S. 2012. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochimica et Cosmochimica Acta 90, 163180.Google Scholar
Kim, J. H., Buscail, R., Fanget, A. S., Eyrolle-Boyer, F., Bassetti, M. A., Dorhout, D., Baas, M., Berne, S. & Damste, J. S. S. 2014. Impact of river channel shifts on tetraether lipids in the Rhone prodelta (NW Mediterranean): implication for the BIT index as an indicator of palaeoflood events. Organic Geochemistry 75, 99108.Google Scholar
Lamb, A. L., Vane, C. H., Rees, J. G., Wilson, G .P. & Moss-Hayes, V. L. 2007. Assessing δ13C and C/N ratios from stored organic material as Holocene sea-level and palaeoenvironmental indicators in the Humber Estuary, UK. Marine Geology 244, 109128.Google Scholar
Lopes dos Santos, R. A. & Vane, C. H. 2016. Signatures of tetraether lipids reveal anthropogenic overprinting of natural organic matter in sediments of the Thames Estuary, UK. Organic Geochemistry 93, 6876.Google Scholar
Milker, Y., Horton, B. P., Vane, C. H., Engelhart, S. E., Nelson, A. R., Witter, R. C., Khan, N. S. & Bridgeland, W. T. 2015. Annual and seasonal distribution of intertidal foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon, USA. Journal of Foraminiferal Research 45, 146166.Google Scholar
Saito, Y., Nishimura, A. & Matsumoto, E. 1989. Transgressive sand sheet covering the shelf and upper slope off Sendai, northeast Japan. Marine Geology 89, 245258.Google Scholar
Sampei, Y. & Matsumoto, E. 2001. C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan − usefulness as an organic source indicator. Geochemical Journal 35, 189205.Google Scholar
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M. & Damste, J. S. S. 2007. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Analytical Chemistry 79, 29402944.Google Scholar
Schouten, S., Hopmans, E. C. & Damste, J. S. S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry 54, 1961.Google Scholar
Sinninghe Damste, J. 2016. Spatial hererogeneity of sources of branched tetraethers in shelf systems: the geochemistry of tetraethers in Berau River delta (Kalimantan, Indonesia). Geochimica et Cosmochimica Acta 186, 1331.Google Scholar
Sinninghe Damste, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C. T. & Geenevasen, J. A. J. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43, 16411651.Google Scholar
Sinninghe Damste, J. S., Rijpstra, W. I. C., Hopmans, E. C., Foesel, B. U., Wust, P. K., Overmann, J. & Stott, M. B. 2014. Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4. Applied and Environmental Microbiology 80, 52075218.Google Scholar
Vane, C. H., Harrison, I. & Kim, A. W. 2007. Assessment of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface sediments of the Inner Clyde Estuary, UK. Marine Pollution Bulletin 54, 13011306.Google Scholar
Vane, C. H., Chenery, S. R., Harrison, I., Kim, A. W., Moss-Hayes, V. & Jones, D. G. 2011. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, Pb-207/206, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 369, 10851111.Google Scholar
Vane, C. H., Moss-Hayes, V., Kim, A. W., Edgley, K. E. & Bearcock, J. M. 2018. Mercury (Hg), n-alkane and unresolved complex mixture (UCM) hydrocarbon pollution in surface sediment across the rural–urban–estuarine continuum of the Clyde, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. DOI: 10.1017/S1755691018000300.Google Scholar
Wu, W. C., Ruan, J. P., Ding, S., Zhao, L., Xu, Y. P., Yang, H., Ding, W. H. & Pei, Y. D. 2014. Source and distribution of glycerol dialkyl glycerol tetraethers along lower Yellow River-estuary-coast transect. Marine Chemistry 158, 1726.Google Scholar
Zell, C., Kim, J. H., Balsinha, M., Dorhout, D., Fernandes, C., Baas, M. & Damste, J. S. S. 2014. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer. Biogeosciences 11, 56375655.Google Scholar
Zhu, C., Wagner, T., Talbot, H. M., Weijers, J. W. H., Pan, J. M. & Pancost, R. D. 2013. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochimica et Cosmochimica Acta 117, 129143.Google Scholar