Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:28:52.711Z Has data issue: false hasContentIssue false

Swimming in Crustacea

Published online by Cambridge University Press:  03 November 2011

Robert R. Hessler
Affiliation:
Scripps Institution of Oceanography, La Jolla, California 92093, U.S.A.

Abstract

An analysis of swimming in living crustaceans is presented in order to elucidate the range of ways this function has been achieved, and to reveal the principles which constrain it. The study focuses on Gnathophausia ingens, a primitive, bathypelagic malacostracan that swims with thoracic exopods and pleopods. These structures consist of a muscular peduncle and one or two flagella that are fringed with setulate setae. The basic motion is rowing with the limb and setal fan extended on the power stroke and flexed on recovery.

A survey of other crustaceans shows that rowing with this type of swimming structure dominates throughout, although paddles often replace the flagella. Particularly pervasive is the large relative area of setae, whose effectiveness must stem from the ability to extend and flex passively and from the high drag generated on the power stroke by the setules at low Reynolds numbers.

A review of reconstructions of Palaeozoic trilobites and marrellomorphs reveals the likelihood that if swimming was the function of the exites, they operated inefficiently or were employed in other methods as well. Sculling and drag reduction on the recovery stroke through feathering rather than flexion are possible alternatives. The more common occurrence of paddle-like limb shafts and blade-like marginal structures in other Palaeozoic arthropods is also noted.

Type
Living forms and their bearing on the interpretation of fossils
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. M. 1971. Size and Shape (Studies in Biology 29), 159. London: E. Arnold.Google Scholar
Bergström, J. 1969. Remarks on the appendages of trilobites. LETHAIA 2, 395414.CrossRefGoogle Scholar
Bergström, J. 1980. Morphology and systematics of early arthropods. ABH NATURWISS VER HAMBURG 23, 742.Google Scholar
Briggs, D. E. G. 1976. The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. BULL GEOL SOC CAN 264, 129.Google Scholar
Briggs, D. E. G. 1977. Bivalved arthropods from the Cambrian Burgess Shale of British Columbia. PALAEONTOLOGY 20, 595621.Google Scholar
Briggs, D. E. G. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. PHIL TRANS R SOC LONDON B 281, 439–87.Google Scholar
Briggs, D. E. G. 1981. The arthropod Odaraia alata Walcott, Middle Cambrian, Burgess Shale, British Columbia. PHIL TRANS R SOC LONDON B 291, 541–84.Google Scholar
Bruton, D. L. & Whittington, H. B. 1983. Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, Middle Cambrian, British Columbia, PHIL TRANS R SOC LONDON B 300, 553–85.Google Scholar
Cannon, H. G. & Manton, S. M. 1927. On the feeding mechanism of a mysid crustacean, Hemimysis lamornae. TRANS R SOC EDINBURGH 55, 219–53.CrossRefGoogle Scholar
Cisne, J. L. 1981. Triarthrus eatoni (Trilobita): anatomy of its exoskeletal, skeletomuscular, and digestive systems. PALAEONTOGR AM 9, 99142.Google Scholar
Fryer, G. 1983. Functional ontogenetic changes in Branchinecta ferox (Milne-Edwards) (Crustacea: Anostraca). PHIL TRANS R SOC LONDON B 303, 229343.Google Scholar
Gauld, D. T. 1966. The swimming and feeding of planktonic copepods. In Barnes, H. (ed.) Some Contemporary Studies in Marine Science, 313334. London: Allen & Unwin.Google Scholar
Harrington, H. J. 1959. General description of Trilobita. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, O, Arthropoda 1:038-0117. Lawrence: University of Kansas.Google Scholar
Hessler, R. R. 1981. Evolution of arthropod locomotion: a crustacean model. In Herreid, C. F. & Fourtner, C. R. (eds.) Locomotion and Energetics in Arthropods, 930. New York: Plenum.CrossRefGoogle Scholar
Hessler, R. R. 1983. A defense of the caridoid facies; wherein the early evolution of the Eumalacostraca is discussed. In Schram, F. R. (ed.) Crustacean Phylogeny, 145164. Rotterdam: Balkema.Google Scholar
Koehl, M. A. R. & Strickler, J. R. 1981. Copepod feeding currents: food capture at low Reynolds number. LIMNOL OCEANOGR 26, 1062–73.CrossRefGoogle Scholar
Kühl, H. 1933. Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität der Nervensystems. Z VGL PHYSIOL 19, 489521.CrossRefGoogle Scholar
Laverack, M. S., Neil, D. M., & Robertson, R. M. 1977. Metachronal expodite beating in the mysid Praunus flexuosus: a quantitative analysis. PROC R SOC LONDON B 198, 139–54.Google Scholar
Lochhead, J. H. 1961. Locomotion. In Waterman, T. H. (ed.) The Physiology of Crustacea, Vol. 2, 313–64. New York: Academic.Google Scholar
Lochhead, J. H. 1977. Unsolved problems of interest in the locomotion of Crustacea. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 257268. London: Academic.Google Scholar
Mickel, T. & Childress, J. 1978. The effect of pH on oxygen consumption and activity in the bathypelagic mysid Gnathophausia ingens. BIOL BULL 154, 138–47.CrossRefGoogle ScholarPubMed
Müller, K. J. 1979. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden, LETHAIA 12, 127.CrossRefGoogle Scholar
Müller, K. J. 1983. Crustacea with preserved soft parts from the Upper Cambrian of Sweden. LETHAIA 16, 93109.CrossRefGoogle Scholar
Nachtigall, W. 1960. Über Kinematik, Dynamik und Energetik des Schwimmens einhemischer Dytisciden. Z VGL PHYSIOL 43, 48118.CrossRefGoogle Scholar
Nachtigall, W. 1961. Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus. Z VGL PHYSIOL 45, 193226.CrossRefGoogle Scholar
Nachtigall, W. 1974. Locomotion: mechanics and hydrodynamics of swimming in aquatic insects. In Rockstein, M. (ed.) The Physiology of lnsecta, 2nd edn, 381432. New York: Academic.Google Scholar
Størmer, L. 1939. Studies on trilobite morphology, part I. The thoracic appendages and their phylogenetic significance. NOR GEOL TIDSKR 19, 143273.Google Scholar
Størmer, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha. SKR VIDENSK-AKAD OSLO, I. NAT-NATURV KL 5, 1158.Google Scholar
Stürmer, W. & Bergström, J. 1976. The arthropods Mimetaster and Vachonisia from the Devonian Hunsrück Shale. PALAONTOL Z 50, 78111.Google Scholar
Vogel, S. 1981. Life in Moving Fluids. Boston: Willard Grant.Google Scholar
Walcott, C. D. 1881. The trilobite: new and old evidence relating to its organization. BULL MUS COMP ZOOL HARVARD 8, 191224.Google Scholar
Whittington, H. B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. BULL GEOL SURV CAN 209, 124.Google Scholar
Whittington, H. B. 1974. Yohoia Walcott and Pleonocaris n. gen., arthropods from the Burgess Shale, Middle Cambrian, British Columbia. BULL GEOL SURV CAN 231, 127.Google Scholar
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. PHIL TRANS R SOC LONDON B 280, 409–43.Google Scholar
Whittington, H. B. 1980. Exoskeleton, moult stage, appendage morphology, and habits of the Middle Cambrian trilobite Olenoides serratus. PALAEONTOLOGY 23, 171204.Google Scholar
Whittington, H. B. 1981. Rare arthropods from the Burgess Shale, Middle Cambrian, British Columbia. PHIL TRANS R SOC LONDON B 292, 329–57.Google Scholar
Zimmer, C. 1941. Cumacea. BRONNS KL ORDNUNGEN TIERREICHS 5 (Abt. 1, Buch 4).Google Scholar