Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:38:57.080Z Has data issue: false hasContentIssue false

The shape of the Upper Carboniferous non-marine bivalve Anthraconaia in relation to the organic carbon content of the host sediment

Published online by Cambridge University Press:  03 November 2011

R. M. C. Eagar
Affiliation:
Keeper of Geology and Deputy Director, The Manchester Museum, The University, Manchester M13 9PL, U.K.

Abstract

Anthraconaia lived on clay grade sediments. In highly variable life assemblages of the A.prolifera group of the E German Wettin Shales (Stephanian C) organic carbon percentage of the host sediment correlates with wu/m and A/L ratios of the shell (where wu is the maximum width ventral to the line of maximum growth, m, L the maximum length measured parallel to the line of the hinge, and A the length anterior to the umbo). Decrease in the organic carbon of the sediment is associated with decrease in umbonal development, elongation of the shell along the m axis, and straightening and reflection of the ventral margin; the latter becomes subparallel to the dorsum or to the m axis with a concomitant decrease in size. These results confirm and amplify earlier work on Anthraconaia in the Appalachian coalfields. The same morphological trends in relation to organic carbon characterise the Anthraconaia modiolaris group of Britain, both within a single succession in upper Westphalian A sediments in Yorkshire, and also in three shell bands of Lower Westphalian B age in S Wales, Yorkshire and central Scotland. In the last named, above the Musselband Coal, statistical formulae (of Leitch 1940) for the species A.salteri are shown to define neither the type assemblage nor its stratigraphical position. The shell-shape/organic carbon relationship has been broadly confirmed on other horizons of lower Westphalian B age in the Scottish and Pennine coalfields. Far from embarrassing the stratigrapher, the relationship, which reflects ultimately trophic level of deltaic palaeoenvironments, contributes to our understanding of non-marine bivalve faunas, especially of the apparent regional distribution of ‘species’ of Anthraconaia.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babin, C. 1986. Le genre Anthraconaia (Bivalvia, Myalinidae) dans de Stéphanien de Montceau-les-Mines (Saône et Loire, France). BULL SOC NAT HIST AUTUN 114, 4957.Google Scholar
Brand, P. J. 1983. Stratigraphical palaeontology of the Westphalian of the Ayrshire Coalfield, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 73, 173–90.CrossRefGoogle Scholar
Broadhurst, F. M. 1959. Anthraconaia pulchella sp. nov. and a study of palaeoecology in the Coal Measures of the Oldham area of Lancashire. QUART J GEOL SOC LONDON 114, 523–45.CrossRefGoogle Scholar
Calver, M. A. 1969. Westphalian of Britain. C R 6e CONGR INT STRATIGR GEOL CARBONIF 1, 233–54.Google Scholar
Cleal, C. 1984. The recognition of the base of the Westphalian D stage in Britain. GEOL MAG 121, 125–29.CrossRefGoogle Scholar
Clough, C. T., Hinxmann, L. W., Wright, W. B., Anderson, E. M. & Carruthers, R. G. 1926. The Economic Geology of the Central Coalfield of Scotland. Area V; Glasgow east, Coatbridge and Airdrie, (2nd Edition). MEM GEOL SURV GB.Google Scholar
Eagar, R. M. C. 1947. A study of a non-marine lamellibranch succession in the Anthraconaia lenisulcata Zone of the Yorkshire Coal Measures. PHILOS TRANS R SOC LONDON B 233, 210–57.Google Scholar
Eagar, R. M. C. 1952. Growth and variation in the non-marine lamellibranch fauna above the Sand Rock Mine of the Lancashire Millstone Grit. Q J GEOL SOC LONDON 107, 339–73.CrossRefGoogle Scholar
Eagar, R. M. C. 1961. A summary of results of recent work on the palaeoecology of Carboniferous non-marine lamellibranchs. C R CONGR INT STRATIGR CARBONIF 1, 137–49.Google Scholar
Eagar, R. M. C. 1962. Boron content in relation to organic carbon in certain sediments of the British Coal Measures. NATURE 196, 428–31.CrossRefGoogle Scholar
Eagar, R. M. C. 1970. Preliminary notes on some new Pennsylvanian marine and non-marine faunas in eastern U.S.A. C.R. 6e CONGR INT STRATIGR GEOL CARBONIF 2, 679–94.Google Scholar
Eagar, R. M. C. 1973. Variation in shape of shell in relation to palaeoecological station in some non-marine Bivalvia of the Coal Measures of south-east Kentucky and of Britain. C R 7e CONGR INT STRATIGR GEOL CARBONIF 2, 387413.Google Scholar
Eagar, R. M. C. 1974. Shape of shell of Carbonicola in relation to burrowing. LETHAIA 8, 219–38.CrossRefGoogle Scholar
Eagar, R. M. C. 1975. Some non-marine bivalve faunas from the Dunkard Group and underlying measures. I. C. White Memorial Symposium, The Age of the Dunkard (ed. Barlow, J. A.), 2367. WEST VIRGINIA GEOL ECON SURV.Google Scholar
Eagar, R. M. C. 1977. Some new Namurian bivalve faunas and their significance in the origin of Carbonicola and in the colonisation of Carboniferous deltaic environments. PHILOS TRANS R SOC LONDON B 271, 535–70.Google Scholar
Eagar, R. M. C. 1978. Shape and function of the shell: a comparison of some living and fossil bivalve molluscs. BIOL REV 53, 169210.CrossRefGoogle Scholar
Eagar, R. M. C. 1983. The non-marine bivalve fauna of the Stephanian C of north Portugal. In Sousa, M. J. & Oliveira, J. T. (eds), The Carboniferous of Portugal. MEM SERV GEOL PORTUGAL 29, 179–85.Google Scholar
Eagar, R. M. C. 1984. Late Carboniferous—early Permian non-marine bivalve faunas of northern Europe and eastern North America. C R 9e CONGR INT STRATIGR GEOL CARBONIF 2, 559–76.Google Scholar
Eagar, R. M. C. 1985a. The stratigraphical and palaeoecological distribution of non-marine bivalves in the coalfields of northwest Spain. C R 10e CONGR INT STRATIGR GEOL CARBONIF 2, 455–76.Google Scholar
Eagar, R. M. C. 1985b. The non-marine bivalves of the succession of Stephanian B age in the Ciñera-Matallana Coalfield. ANN FAC CIENC PORTO SUPPL 64, 514.Google Scholar
Eagar, R. M. C. & Rayner, D. H. 1952. A non-marine shelly limestone and other faunal horizons from the Coal Measures near Wakefield. TRANS LEEDS GEOL ASSOC 6, 166209.Google Scholar
Eagar, R. M. C. & Spears, D. A. 1966. Boron content in relation to organic carbon and to palaeosalinity in certain British Upper Carboniferous sediments. NATURE 209, 177–81.CrossRefGoogle Scholar
Eagar, R. M. C., Stone, N. M. & Dickson, P. A. 1984. Correlations between shape, weight and thickness of shell in four populations of Venerupis rhomboides (Pennant). J MOLL STUD 50, 1938.Google Scholar
Forsyth, I. H. & Brand, P. J. 1986. Stratigraphy and stratigraphical palaeontology of Westphalian B and C in the Central Coalfield of Scotland. BRIT GEOL SURV REP 18(4), 119.Google Scholar
Groves, A. W. 1951. Silicate analysis, 2nd edn. London: Allen & Unwin.CrossRefGoogle Scholar
Haas, F. 1969. Superfamily Unionacea Fleming, 1828. In Moore, R. C. (ed.) Treatise on Invertebrate Palaeontology, Part N, 1, Mollusca 6, Bivalvia, N411467. Geological Society of America and University of Kansas Press.Google Scholar
Hagendorf, U. & Schwahn, H. J. 1969. Sedimentpetrographische and paläontologische Untersachungen des Permosiles im Untergrund der Querfurter Mulde. HALLESCHE JAHRB MITTELST ERDGESCH 9, 4074.Google Scholar
Haszeldine, R. S. 1984. Carboniferous North Atlantic palaeogeography: stratigraphic evidence for rifting, not megashear or subduction. GEOL MAG 121, 443463.CrossRefGoogle Scholar
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. BULL MUS AMER NAT HIST 108, 131–51.Google Scholar
Johannessen, O. H. 1973. Population structure and individual growth of Venerupis pullastra (Montagu) (Lamellibranchia). SARSIA 52, 97116.CrossRefGoogle Scholar
Kampe, A. 1966. Stratigraphie und Facies des Permokarbons im Nordöstlichen Saaletrog. MATH NAT FAC Dissertation, Humboldt Univ, unpublished.Google Scholar
Kampe, A. & Remy, W. 1962. Ausbildung und Abgrenzung des Stéphanien in der Hallesche Mulde. DEUTSCH AKAD WISS BERLIN MONATSSCHR 4, 5468.Google Scholar
Kozur, H. 1980. Beitrage zur Stratigraphie des Perms, Teil III (2), Zur Korrelation der überwiegen kontinentalen Ablagerungen des obersten Karbons und Perms vo Mittel- und Westeuropa. FREIB FORSCHUNGSH 384, 69172.Google Scholar
Kozur, H. 1984. Carboniferous-Permian boundary in marine and continental sediments. C R 9e CONGR INT STRATIGR GEOL CARBONIF 2, 577–86.Google Scholar
Leitch, D. 1940. A statistical investigation of the Anthracomyas of the basal Similis-Pulchra Zone in Scotland. Q J GEOL SOC LONDON 96, 1337.CrossRefGoogle Scholar
Levinton, J. S. 1970. The paleoecological significance of opportunistic species. LETHAIA 3, 6978.CrossRefGoogle Scholar
Lumsden, G. I. & Calver, M. A. 1958. The stratigraphy and palaeontology of the Coal Measures of the Douglas Coalfield, Lanarkshire. BULL GEOL SURV G B 15, 3270.Google Scholar
Lutz, R. A. & Rhoads, D. C. 1980. Growth patterns within the molluscan shell: an overview, In Rhoads, D. C. & Lutz, R. A. (eds) Sketetal Growth of Aquatic Organisms, pp. 203–54, New York: Plenum Press.CrossRefGoogle Scholar
Ramsbottom, W. H. C., Calver, M. A., Eagar, R. M. C., Hodson, F., Holiday, D. W., Stubblefield, C. J. and Wilson, R. B. 1978. A correlation of Silesian rocks in the British Isles. SPEC REP GEOL SOC LONDON 10, 181.Google Scholar
Rogers, M. J. 1965. a revision of the species of non-marine Bivalvia from the Upper Carboniferous of eastern North America. J PALEONT 39, 663–86.Google Scholar
Trueman, A. E. & Weir, J. 1946. A monograph of British Carboniferous non-marine lamellibranchia. PALAEONTOGR SOC MONOGR, Part 1, i–xxxiv.CrossRefGoogle Scholar
Wagner, R. H. & Lemos, de Sousa M. J. 1983. The Carboniferous megafloras of Portugal—a revision of identifications and discussion of stratigraphic ages. In Lemos, de Sousa M. J. & Oliveira, J. T. (eds) The Carboniferous of Portugal. MEM SERV GEOL PORTUGAL 29, 117–77.Google Scholar
Weir, J. 1966. A monograph of the British Carboniferous non-marine Lamellibranchia. PALAEONTOGR SOC MONOGR XI, 321–72.Google Scholar
Weir, J. & Leitch, D. 1936. The zonal distribution of the non-marine lamellibranchs in the Coal Measures of Scotland. TRANS R SOC EDINBURGH 58, 697751.Google Scholar
Wright, W. B. 1938. The Anthracomyas of the Lancashire Coal Measures and the correlation of the latter with the Coal Measures of Scotland. SUMM PROG GEOL SURV 1936, Part II, 1026.Google Scholar