Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:34:05.490Z Has data issue: false hasContentIssue false

The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia

Published online by Cambridge University Press:  03 November 2011

Phillip L. Blevin
Affiliation:
Phillip L. Blevin, Department of Geology, The Australian National University, GPO Box 4, Canberra ACT 2601, Australia
Bruce W. Chappell
Affiliation:
Bruce W. Chappell, Department of Geology, The Australian National University, GPO Box 4, Canberra ACT 2601, Australia

Abstract

The ore-element associations of granite-related ore deposits in the eastern Australian Palaeozoic fold belts can be related to the inferred relative oxidation state, halogen content and degree of fractional crystallisation within the associated granite suites. Sn mineralisation is associated with both S- and I-type granites that are reduced and have undergone fractional crystallisation. Cu and Au are associated with magnetite- and/or sphene-bearing, oxidised, intermediate I-type suites. Mo is associated with similar granites that are more fractionated and oxidised. W is associated with a variety of granite types and shows little dependence on inferred magma redox state. The observed ore deposit-granite type distribution in eastern Australia, and the behaviour of ore elements during fractionation, is consistent with models of ore element sequestering by sulphides and Fe-Ti phases (e.g. pyrrhotite, ilmenite, sphene, magnetite) whose stability is nominally fO2-dependent. Fractional crystallisation acts to amplify this process through the progressive removal of compatible elements and the concentration of incompatible elements into decreasing melt volumes. The halogen content is also important. S-type granites are poorer in Cl than I-types. Cl decreases and F increases in both S- and I-type granites with fractional crystallisation. Low Cl contents combined with low magma fO2 in themselves seem to provide an adequate explanation for the rarity of Mo, Cu, Pb and Zn type mineralisation with S-type granites. Although such properties of granite suites seem adequately to predict the associated ore-element assemblage to be expected in associated mineral deposits, additional factors determine whether or not there is associated economic mineralisation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, G. O. & Sillitoe, R. H. 1989. Mount Morgan gold–copper deposit, Queensland, Australia: evidence for an intrusion-related replacement origin. ECON GEOL 84, 1805–16.CrossRefGoogle Scholar
Baker, E. M. & Andrew, A. S. 1991. Geologic, fluid inclusion, and stable isotope studies of the gold bearing breccia pipe at Kidston, Queensland, Australia. ECON GEOL 86, 810–30.CrossRefGoogle Scholar
Burnham, C. W.1979.Magmas and hydrothermal fluids. InBarnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits (2nd edn), 71136. New York: Wiley.Google Scholar
Burnham, C. W. & Ohmoto, H. 1980. Late-stage processes of felsic magmatism. In Ishihara, S. & Takenouchi, S. (eds) Granite magmatism and related mineralisation. MIN GEOL SPEC ISSUE 8, 111.Google Scholar
Candela, P. A. 1989. Felsic magmas, volatile, and metallogenesis. SOC ECON GEOL REV ECON GEOL 4, 223–33.Google Scholar
Candela, P. A. & Bouton, S. L. 1990. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. ECON GEOL 85, 633–40.CrossRefGoogle Scholar
Candela, P. A. & Holland, H. D. 1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. ECON GEOL 81, 119.CrossRefGoogle Scholar
Carmichael, I. S. E. 1991. The redox state of basic and silicic magmas: a reflection of their source regions? CONTRIB MINERAL PETROL 106, 129–41.CrossRefGoogle Scholar
Carroll, M. R. & Rutherford, M. J. 1985. Sulphide and sulphate saturation in hydrous silicate melts. J GEOPHYS RES 90, C60112.Google Scholar
Chappell, B. W. 1984. Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. PHILOS TRANS R SOC LONDON A310, 693707.Google Scholar
Chappell, B. W. & Stephens, W. E. 1988. Origin of infracrustal (I-type) granite magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 7186.Google Scholar
Chappell, B. W. & White, A. J. R. 1984. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Keqin, Xu & Guanchi, Tu (eds) Geology of granites and their metallogenic relations, 87–101. Beijing: Science Press.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I-type and S-type granites in the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 83, 126.Google Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.CrossRefGoogle Scholar
Chappell, B. W., White, A. J. R. & Hine, R. 1988. Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. AUST J EARTH SCI 35, 505–21.Google Scholar
Chappell, B. W., Wyborn, L. A. I., White, A. J. R., Burnham, C. W. & Wyborn, D. (in prep.). S-type granites of the Wagga Basement Terrane: an example of compositional variation resulting from sequential restite fractionation, fractional crystallisation, and hydrothermal alteration.Google Scholar
Cochrane, G. W. 1971. Tin deposits of Victoria. GEOL SURV VICTORIA BULL 60.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. CONTRIB MINERAL PETROL 80, 189200.CrossRefGoogle Scholar
Einaudi, M. T., Meinert, L. D. & Newberry, R. J. 1981. Skarn deposits. ECON GEOL 75TH ANNIVERSARY VOL 317–91.Google Scholar
Flood, R. H. & Shaw, S. E. 1975. A cordierite-bearing granite suite from the New England Batholith, NSW. CONTRIB MINERAL PETROL 52, 157–64.CrossRefGoogle Scholar
Haughton, D. R., Roeder, P. L. & Skinner, B. J. 1974. Solubility of sulphur in mafic magmas. ECON GEOL 69, 451–67.CrossRefGoogle Scholar
Heinrich, C. A. 1990. The chemistry of hydrothermal tin (–tungsten) ore deposition. ECON GEOL 85, 457–81.CrossRefGoogle Scholar
Hine, R., Williams, I. S. & Chappell, B. W. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J GEOL SOC AUST 25, 219–34.CrossRefGoogle Scholar
Horton, D. J. 1978. Porphyry-type copper-molybdenum mineralisation belts in eastern Queensland. ECON GEOL 73, 904–21.CrossRefGoogle Scholar
Ishihara, S. 1981. The granitoid series and mineralisation. ECON GEOL 75TH ANNIVERSARY VOL, 458–84.Google Scholar
Ivanova, G. F. & Butuzova, Ye. G. 1968. Distribution of tungsten, tin and molybdenum in granites of eastern Transbaikalia. GEOKHIMIY A 6, 689700.Google Scholar
Jaireth, S., Heinrich, C. A. & Solomon, M. 1990. Chemical controls on hydrothermal tungsten transport and the precipitation of ferberite and scheelite. GEOL SOC AUST ABSTR 25, 269–70.Google Scholar
Katsura, T. & Nagashima, S. 1974. Solubility of sulphur in some magmas at 1 atmosphere. GEOCHIM COSMOCHIM ACTA 38, 517–31.CrossRefGoogle Scholar
Keith, J. D., van Middelaar, W., Clark, A. H. & Hodgson, C. J. 1989. Granitoid textures, compositions, and volatile fugacities associated with the formation of tungsten-dominated skarn deposits. SOC ECON GEOL REV ECON GEOL 4, 235–50.Google Scholar
Kilinc, I. A. & Burnham, C. W. 1972. Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. ECON GEOL 67, 231–5.CrossRefGoogle Scholar
Kwak, T. A. P. 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Amsterdam: Elsevier.Google Scholar
Lehmann, B. 1990. Metallogeny of Tin. Berlin: Springer.Google Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. GEOL SOC AM ABSTR PROG 11, 468.Google Scholar
Lynton, S. J., Candela, P. A. & Piccoli, P. M. 1990. Experimental determination of copper partitioning between pyrrhotite and high silica rhyolite. GEOL SOC AM ABSTR PROG 22, 181.Google Scholar
Markham, N. L. & Basden, H. 1974. The mineral deposits of New South Wales. Sydney: Geological Survey of New South Wales.Google Scholar
Munoz, J. L. 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. MIN SOC AM REV MINERAL 13, 469–93.Google Scholar
Murray, C. G. 1990. Tasman Fold Belt in Queensland. In Hughes, F. E. (ed.) Geology of the mineral deposits of Australia and Papua New Guinea, 1431–50. Melbourne: Australasian Institute of Mining and Metallurgy.Google Scholar
Newberry, R. J. & Swanson, S. E. 1986. Scheelite skarn granitoids: an evaluation of the roles of magmatic source and process. ORE GEOL REV 1, 5781.CrossRefGoogle Scholar
Newberry, R. J., Burns, L. E., Swanson, S. E. & Smith, T. E. 1990. Comparative petrologic evolution of the Sn and W granites of the Fairbanks-Circle area, interior Alaska. In Stein, H. J. & Hannah, J. L. (eds) Ore-bearing granite systems: petrogenesis and mineralising processes. PROF PAP US GEOL SURV 246, 121–42.Google Scholar
Plimer, I. R. 1980. Exhalative tin and tungsten deposits associated with mafic volcanism as precursors to tin and tungsten deposits associated with granites. MINER DEPOSITA 15, 275–89.CrossRefGoogle Scholar
Stanton, R. L. 1972. Ore petrology. New York: McGraw-Hill.Google Scholar
Stanton, R. L. 1990. Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores. In Hughes, F. E. (ed.) Geology of the mineral deposits of Australia and Papua New Guinea, 101–7. Melbourne: Australian Institute of Mining and Metallurgy.Google Scholar
Tacker, R. C. & Candela, P. A. 1987. Partitioning of molybdenum between magnetite and melt: a preliminary study of the partitioning between silicic magmas and crystalline phases. ECON GEOL 82, 1827–38.CrossRefGoogle Scholar
Taylor, J. R. & Wall, V. J. 1990. The behaviour of tin in magmatic-hydrothermal systems. GEOL SOC AUST ABSTR 25, 270–1.Google Scholar
Turner, N. J. & Taheri, J. 1990. Tin and tungsten deposits and related Devonian granitoids. Excursion Guide E2, 10th Australian Geological Convention, Geological Society of Australia.Google Scholar
van Middelaar, W. T. & Keith, J. D. 1990. Mica cheimstry as an indicator of oxygen and halogen fugacities in the CanTung and other W-related granitoids in the North American Cordillera. In Stein, H. J. & Hannah, J. L. (eds) Ore-bearing granite systems; petrogenesis and mineralising processes. GEOL SOC AM PROF PAP 246, 205–20.Google Scholar
Watchhorn, R. B. & Wilson, C. J. L. 1989. Structural setting of the gold mineralization at Stawell, Victoria, Australia. In Keays, R. R., Ramsay, W. R. H. & Groves, D. I. (eds) The geology of gold deposits: The perspective in 1988. ECON GEOL MONOGR 6, 292309.Google Scholar
Weber, C. R., Paterson, I. B. L. & Townsend, D. J. 1978. Molybdenum in New South Wales. GEOL SURV NEW SOUTH WALES MIN RES 43.Google Scholar
Wesolowski, D., Cramer, J. & Ohmoto, H. 1988. Scheelite mineralsiation in skarns adjacent to Devonian granitoids at King Island, Tasmania. In Taylor, R. P. & Strong, D. F. (eds) Recent Advances in the Geology of Granite-Related Mineral Deposits. CAN INST MIN METALL SPEC VOL 39, 234–51.Google Scholar
Whalen, J. B. & Chappell, B. W. 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan Fold Belt, southeast Australia. AM MINERAL 73, 281–96.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.Google Scholar
White, A. J. R. & Chappell, B. W. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 79, 169–81.Google Scholar
Williams, E., McClenaghan, M. P. & Collins, P. L. F. 1989. Mid-Palaeozoic deformation, granitoids and ore deposits. In Burrett, C. F. & Martin, E. L. (eds) Geology and Mineral Resources of Tasmania. GEOL SOC AUST SPEC PUBL 15, 238–92.Google Scholar
Wood, S. A. & Vlassopoulos, D. 1989. Experimental determination of the hydrothermal solubility and speciation of tungsten at 500°C and 1 kbar. GEOCHIM COSMOCHIM ACTA 53, 303–12.CrossRefGoogle Scholar
Wyborn, D., Turner, B. S. & Chappell, B. W. 1987. The Boggy Plain Supersuite: a distinctive belt of I-type igneous rocks of potential economic significance in the Lachlan Fold Belt. AUST J EARTH SCI 34, 2143.CrossRefGoogle Scholar