Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T18:26:57.921Z Has data issue: false hasContentIssue false

A review of preservational variation of fossil inclusions in amber of different chemical groups

Published online by Cambridge University Press:  15 January 2018

Victoria E. McCoy*
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK. Email: [email protected]
Carmen Soriano
Affiliation:
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
Sarah E. Gabbott
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK. Email: [email protected]
*
*Corresponding author

Abstract

Fossils in amber are a particularly important and unique palaeobiological resource. Amber is best known for preserving exceptionally life-like fossils, including microscopic anatomical details, but this fidelity of preservation is an end-member of a wide spectrum of preservation quality. Many amber sites only preserve cuticle or hollow moulds, and most amber sites have no fossils at all. The taphonomic processes that control this range in preservation are essentially unknown. Here, we review the relationship between amber groups and fossil preservation, based on published data, to determine whether there is a correlation between resin type and aspects of preservation quality. We found that ambers of different chemistry demonstrated statistically significant differences in the preservational quality and the propensity of a site to contain fossils. This indicates that resin chemistry does influence preservational variation; however, there is also evidence that resin chemistry alone cannot explain all the variation. To effectively assess the impact of this (and other) variables on fossilisation in amber, and therefore biases in the amber fossil record, a more comprehensive sampling of bioinclusions in amber, coupled with rigorous taphonomic experimentation, is required.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Anderson, K. B. 1994. The nature and fate of natural resins in the geosphere – IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia – evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Organic Geochemistry 21, 209–12.Google Scholar
Anderson, K. B. 1996. The nature and fate of natural resins in the geosphere – VII. A radiocarbon (14C) age scale for description of immature natural resins: an invitation to scientific debate. Organic Geochemistry 25, 251–53.Google Scholar
Anderson, K. B. & Botto, R. 1993. The nature and fate of natural resins in the geosphere—III. Re-evaluation of the structure and composition of Highgate Copalite and Glessite. Organic Geochemistry 20, 1027–38.Google Scholar
Anderson, K. B. & Winans, R. 1991. The nature and fate of natural resins in the geosphere. 1. Evaluation of pyrolysis-gas chromatography-mass spectrometry for the analysis of natural resins and resinites. Analytical Chemistry 63, 2901–08.Google Scholar
Austin, J. J., Ross, A. J., Smith, A. B., Fortey, R. A., & Thomas, R. H. 1997. Problems of reproducibility–does geologically ancient DNA survive in amber–preserved insects? Proceedings of the Royal Society, London B: Biological Sciences 264, 467–74.Google Scholar
Azar, D., Gèze, R. & Acra, F. 2010. Lebanese amber. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 271–98. Manchester, UK: Siri Scientific Press. 304 pp.Google Scholar
Becerra, J. X., Venable, D., Evans, P. & Bowers, W. 2001. Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. American Zoologist 41, 865–76.Google Scholar
Beck, C. W. 1999. The chemistry of amber. Estudios del Museo de Ciencias Naturales de Álava 14, 3348.Google Scholar
Boucot, A. J. & Poinar, G. O. Jr. 2010. Fossil Behaviour Compendium. CRC Press. 391 pp.Google Scholar
Bray, P. S. & Anderson, K. B. 2009. Identification of Carboniferous (320 million years old) class Ic amber. Science 326, 132–34.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31, 275301.Google Scholar
Colchester, D. M., Webb, G. & Emseis, P. 2006. Amber-like fossil resin from north Queensland, Australia. Gemmologist 22, 378–85.Google Scholar
Coty, D., Aria, C., Garrouste, R., Wils, P., Legendre, F. & Nel, A. 2014. The first ant-termite syninclusion in amber with CT-scan analysis of taphonomy. PloS one 9, e104410.Google Scholar
del Rosario Castañeda, M., Sherratt, E. & Losos, J. B. 2014. The Mexican amber anole, Anolis electrum, within a phylogenetic context: implications for the origins of Caribbean anoles. Zoological Journal of the Linnean Society 172, 133–44.Google Scholar
Dierick, M., Cnudde, V., Masschaele, B., Vlassenbroeck, J., Van Hoorebeke, L. & Jacobs, P. 2007. Micro-CT of fossils preserved in amber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, 641–43.Google Scholar
Grimaldi, D., Bonwich, E., Delannoy, M. & Doberstein, S. 1994. Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates 3097, 131.Google Scholar
Henwood, A. 1992. Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. PALAIOS 7, 203–12.Google Scholar
Kirejtshuk, A. G., Azar, D., Tafforeau, P., Boistel, R. & Fernandez, V. 2009. New beetles of Polyphaga (Coleoptera, Polyphaga) from Lower Cretaceous Lebanese amber. Denisia 26, 119–30.Google Scholar
Labandeira, C. 2014. Amber. Reading and Writing of the Fossil record: Preservational Pathways to Exceptional Fossilization, Paleontological Society Papers 20, 163216.Google Scholar
Lak, M., Néraudeau, D., Nel, A., Cloetens, P., Perrichot, V. & Tafforeau, P. 2008. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microscopy and microanalysis 14, 251–59.Google Scholar
Lambert, J. B., Frye, J. S. & Poinar, G. O. 1990. Analysis of North American amber by carbon-13 NMR spectroscopy. Geoarchaeology 5, 4352.Google Scholar
Lambert, J. B., Johnson, S. C., Poinar, G. O. & Frye, J. S. 1993. Recent and fossil resins from New Zealand and Australia. Geoarchaeology 8, 141–55.Google Scholar
Lambert, J. B., Johnson, S. C. & Poinar, G. O. Jr 1995. Resin from Africa and South America: criteria for distinguishing between fossilized and recent resin based on NMR spectroscopy. ACS Symposium Series 617, 193202.Google Scholar
Lambert, J. B., Johnson, S. & Poinar, G. 1996. Nuclear magnetic resonance characterization of Cretaceous amber. Archaeometry 38, 325–35.Google Scholar
Lambert, J. B., Santiago-Blay, J. A. & Anderson, K. B. 2008. Chemical signatures of fossilized resins and recent plant exudates. Angewandte Chemie International Edition 47, 9608–16.Google Scholar
Lambert, J. B., Tsai, C. H., Shah, M., Hurtley, A. & Santiago-Blay, J. 2012. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry 54, 332–48.Google Scholar
Lambert, J. B., Levy, A. J., Santiago-Blay, J. A. & Wu, Y. 2013. Nuclear magnetic resonance characterization of Indonesian amber. Life: The Excitement of Biology 1, 136.Google Scholar
Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. 2015. Examination of amber and related materials by NMR spectroscopy. Magnetic Resonance in Chemistry 53, 28.Google Scholar
Langenheim, J. H. 1990. Plant resins. American Scientist 78, 1624.Google Scholar
Langenheim, J. H. 1995. Biology of amber-producing trees: focus on case studies of Hymenaea and Agathis. In Penney, D. (ed.) Amber, Resinite and Fossil Resin, 131. Washington, DC: American Chemical Society. 297 pp.Google Scholar
Langenheim, J. H. 2003. Plant resins: chemistry, evolution, ecology and ethnobotany. Oregon, USA: Timber Press. 586 pp.Google Scholar
Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 1964.Google Scholar
Martínez-Delclòs, X., Arillo, A., Peñalver, E., Barrón, E., Soriano, C., Del Valle, R. L., Bernárdez, E., Corral, C. & Ortuño, V. M. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6, 135–49.Google Scholar
Mazur, N., Nagel, M., Leppin, U., Bierbaum, G. & Rust, J. 2014. The extraction of fossil arthropods from Lower Eocene Cambay amber. Acta Palaeontologica Polonica 59, 455–59.Google Scholar
Moreau, J.-D., Cloetens, P., Gomez, B., Daviero-Gomez, V., Néraudeau, D., Lafford, T. A. & Tafforeau, P. 2014. Multiscale 3D virtual dissections of 100-million-year-old flowers using X-Ray synchrotron micro-and nanotomography. Microscopy and Microanalysis 20, 305–12.Google Scholar
Nel, A. & Prokop, J. A. 2005. New fossil Scelionidae (Insecta: Hymenoptera) in early Paleogene. Polskie Pismo Entomologiczne 74, 339–47.Google Scholar
Peñalver, E., Arillo, A., Pérez-de la Fuente, R., Riccio, M. L., Delclòs, X., Barrón, E. & Grimaldi, D. A. 2015. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Current Biology 25, 1917–23.Google Scholar
Penney, D. 2002. Paleoecology of Dominican amber preservation: spider (Araneae) inclusions demonstrate a bias for active, trunk-dwelling faunas. Paleobiology 28, 389–98.Google Scholar
Penney, D. 2010. Dominican amber. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 2241. Manchester, UK: Siri Scientific Press. 304 pp.Google Scholar
Penney, D. 2016. Amber Palaeobiology: Research trends and perspectives for the 21st century. Manchester, UK: Siri Scientific Press. 128 pp.Google Scholar
Penney, D., Wadsworth, C., Fox, G., Kennedy, S. L., Preziosi, R. F. & Brown, T. A. 2013. Absence of ancient DNA in sub fossil insect inclusions preserved in 'Anthropocene' Colombian copal. PLoS ONE 8, e73150.Google Scholar
Penney, D. & Green, D. 2010. Introduction, preparation, study & conservation of amber inclusions. In Penney, D. (ed.) Biodiversity of Fossils in Amber from the Major World Deposits, 521. Manchester, UK: Siri Scientific Press. 304 pp.Google Scholar
Penney, D. & Jepson, J. E. 2014. Fossil Insects: An introduction to palaeoentomology. Manchester, UK: Siri Scientific Press. 224 pp.Google Scholar
Penney, D. & Langan, A. M. 2006. Comparing amber fossil assemblages across the Cenozoic. Biology letters 2, 266–70.Google Scholar
Penney, D. & Preziosi, R. F. 2010. On inclusions in subfossil resins (copal). In Penney, D. (ed.) Biodiversity of fossils in amber from the major world deposits, 300–04. Manchester, UK: Siri Scientific Press. 304 pp.Google Scholar
Penney, D. & Preziosi, R. F. 2014. Estimating fossil ant species richness in Eocene Baltic amber. Acta Palaeontologica Polonica 59, 927–29.Google Scholar
Pérez-de la Fuente, R., Delclòs, X., Peñalver, E. and Engel, M. S. 2016. A defensive behavior and plant–insect interaction in Early Cretaceous amber – The case of the immature lacewing Hallucinochrysa diogenesi. Arthropod structure & development 45, 133–39.Google Scholar
Phillips, M. A. & Croteau, R. B. 1999. Resin-based defenses in conifers. Trends in plant science 4, 184–90.Google Scholar
Poinar, G.O. 1991. Hymenaea protera sp. n. (Leguminosae: Caesalpinioideae) from Dominican amber has African affinities. Experientia 47, 1075–82.Google Scholar
Poinar, G. O. & Hess, R. 1982. Ultrastructure of 40-million-year-old insect tissue. Science 215, 1241–42.Google Scholar
Poinar, G. O. & Hess, R. 1985. Preservative qualities of recent and fossil resins: electron micrograph studies on tissue preserved in Baltic amber. Journal of Baltic Studies 16, 222–30.Google Scholar
Poinar, G. O. & Poinar, R. 1999. The amber forest: a reconstruction of a vanished world. New York: Princeton University Press. 292 pp.Google Scholar
R Development Core Team. 2014. R: A language and environment for statistical computing, 2013. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
Ragazzi, E., Roghi, G., Giaretta, A. & Gianolla, P. 2003. Classification of amber based on thermal analysis. Thermochimica Acta 404, 4354.Google Scholar
Ross, A. J. 2010. Amber: The Natural Time Capsule. London, the Natural History Museum: Firefly Books Ltd. 112 pp.Google Scholar
Ross, A. J. & Sheridan, A. 2013. Amazing Amber. Edinburgh: NMS Enterprises. 48 pp.Google Scholar
Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F. & Thomas, J. C. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences 107, 18360–65.Google Scholar
Saint Martin, J.-P., Saint Martin, S., Bolte, S. & Néraudeau, D. 2014. Spider web in Late Cretaceous French amber (Vendée): The contribution of 3D image microscopy. Comptes Rendus Palevol 13, 463–72.Google Scholar
Saupe, E .E., Pérez-De La Fuente, R., Selden, P. A., Delclòs, X., Tafforeau, P. & Soriano, C. 2012. New Orchestina Simon, 1882 (Araneae: Oonopidae) from Cretaceous ambers of Spain and France: first spiders described using phase-contrast X-ray synchrotron microtomography. Palaeontology 55, 127–43.Google Scholar
Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T. & Grimaldi, D. A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences 109, 14796–801.Google Scholar
Serrano-Sánchez, M., Hegna, T. A., Schaaf, P., Pérez, L., Centeno-García, E. & Vega, F. J. 2015. The aquatic and semiaquatic biota in Miocene amber from the Campo La Granja mine (Chiapas, Mexico): paleoenvironmental implications. Journal of South American Earth Sciences 62, 243–56.Google Scholar
Sherratt, E., del Rosario Castañeda, M., Garwood, R. J., Mahler, D. L., Sanger, T. J., Herrel, A., De Queiroz, K. & Losos, J. B. 2015. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proceedings of the National Academy of Sciences 112, 9961–66.Google Scholar
Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. 2015. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PloS one 10, e0118820.Google Scholar
Soriano, C., Archer, M., Azar, D., Creaser, P., Delclòs, X., Godthelp, H., Hand, S., Jones, A., Nel, A. & Néraudeau, D. 2010. Synchrotron X-ray imaging of inclusions in amber. Comptes Rendus Palevol 9, 361–68.Google Scholar
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P. & Poinar, G. O. 1998. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society, London B: Biological Sciences 265, 641–47.Google Scholar
Trapp, S. & Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annual review of plant biology 52, 689724.Google Scholar
Vavra, N. 2009. Amber, fossil resins, and copal: Contributions to the terminology of fossil plant resins. Denisia 26, 213–22.Google Scholar
Villagra, C. A., Meza, A. A. & Urzúa, A. 2014. Differences in arthropods found in flowers versus trapped in plant resins on Haplopappus platylepis Phil.(Asteraceae): Can the plant discriminate between pollinators and herbivores? Arthropod–Plant Interactions 8, 411–19.Google Scholar
Wang, B., Xia, F., Engel, M. S, Perrichot, V., Shi, G., Zhang, H., Chen, J., Jarzembowski, E. A., Wappler, T. & Rust, J. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances 2, e1501918.Google Scholar
Weitschat, W. & Wichard, W. 2010. Baltic amber. In Penney, D. (ed.) Biodiversity of fossils in amber from the major world deposits, 80115. Manchester, UK: Siri Scientific Press. 304 pp.Google Scholar
Wolfe, A. P., Tappert, R., Muehlenbachs, K., Boudreau, M., Mckellar, R. C., Basinger, J. F. & Garrett, A. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society, London B: Biological Sciences 276, 3403–12.Google Scholar
Wunderlich, J. 2004. Subrecent spiders (Araneae) in copal from Madagascar, with description of new species. Beiträge zur Araneologie 3, 1830–53.Google Scholar
Zschokke, S. 2003. Glue droplets in fossil spider webs. European Arachnology 2003, 367–74.Google Scholar
Supplementary material: PDF

McCoy et al. supplementary material

Table S1

Download McCoy et al. supplementary material(PDF)
PDF 112.8 KB
Supplementary material: PDF

McCoy et al. supplementary material

Table S2

Download McCoy et al. supplementary material(PDF)
PDF 78 KB
Supplementary material: PDF

McCoy et al. supplementary material

McCoy et al. supplementary material 1

Download McCoy et al. supplementary material(PDF)
PDF 141.2 KB