Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T13:05:24.165Z Has data issue: false hasContentIssue false

The relationship between crustal magmatic underplating and granite genesis: an example from the Velay granite complex, Massif Central, France

Published online by Cambridge University Press:  03 November 2011

B. J. Williamson
Affiliation:
B. J. Williamson, Department of Geology, Birkbeck College,University of London, Malet Street, London WC1E 7HX,U.K.,; and Department of Geology, Royal Holloway and Bedford New College, University of London, Egham Hill, Egham, Surrey, TW20 0EX, U.K.
H. Downes
Affiliation:
H. Downes, Department of Geology, Birkbeck College,University of London, Malet Street, London WC1E 7HX, U.K.
M. F. Thirlwall
Affiliation:
M. F. Thirlwall, Department of Geology, Royal Holloway and Bedford New College,University of London, Egham Hill, Egham, Surrey TW20 0EX, U.K.

Abstract

The Velay granite pluton (Massif Central, France) is the youngest (304 ± 5 Ma) and largest (∼6,900 km2) of the major Massif Central monzogranites/granodiorites and was formed nearly 50 Ma after the cessation of Hercynian continental collision (Pin & Duthou 1990). It is a highly heterogeneous pluton consisting of I-type, high-Sr granites (Sr = 500-900 ppm) with low (+35 to +41) and high (-3 to -5), at its centre, grading into S-type and mixed I-S-type heterogeneous granites of more normal Sr content (100–420 ppm) and higher (+40 to +210) and lower (-3·8 to -7.3) at its margins.

The metasedimentary lower crust of the Massif Central was underplated/intruded by mafic mantle-derived magmas between 360 Ma and 300 Ma. From 300-280 Ma (Downes et al. 1991) underplating led to partial melting and granulite facies metamorphism of the underplated material (represented by felsic and mafic meta-igneous lower crustal xenoliths, = –11 to +112, = +2·2 to 8·2, Downes et al 1990). The partial melts assimilated mainly schist but also felsic gneiss and older granite country rock material ( = +100 to +300, = - 5 to -9) to produce the heterogeneous granites. Plagioclase and biotite were accumulated at the base of the intrusion which was intruded to high levels to form the high-Sr granites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J. & Othman, D.Ben 1980. Nd-Sr isotope relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. NATURE 286, 335–41.CrossRefGoogle Scholar
Atherton, M. P., McCourt, W. J., Sanderson, L. M. & Taylor, W. P. 1979. The geochemical character of the segmented Peruvian coastal batholith and associated volcanics. In Atherton, M. P. & Tarney, J. (eds) 4564. Nantwich: Shiva.Google Scholar
Othman, D.Ben, Fourcade, S. & Allègre, C. J. 1984. Recycling processes in granite-granodiorite complex genesis: the Querigut case studied by Nd-Sr isotope systematics. EARTH PLANET SCI LETT 69, 290300.CrossRefGoogle Scholar
Berthier, F., Duthou, J. L. & Roques, M. 1979. Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-dévonien de mise en place de l'un de ses facès types. BULL BRGM 2(2) 5972.Google Scholar
Burg, J. P., Leyreloup, A., Marchand, J. & Matte, Ph. 1984. Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: an example in the French Massif Central. In Hutton, D. W. H. & Sanderson, D. J., (eds), Variscan tectonics of the North Atlantic Region. GEOL SOC LONDON SPEC PUBL 14, 4761.CrossRefGoogle Scholar
Caen-Vachette, M. 1979. Age Cambrien de rhyolites transformées en leptynites dans la série métamorphique du Pilat (Massif Central français). CR ACAD SCI PARIS 289, 9971000.Google Scholar
Caen-Vachette, M., Couturié, J.-P. & Didier, J. 1982. Ages radiométriques des granites anatechtique et tardimigmatique du Velay (Massif Central français). CR ACAD SCI PARIS 294, 135–8.Google Scholar
Chappell, B. W. & Stephens, W. E. 1988. Origin of infracrustal (I-type) granite magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 7186.Google Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173174.Google Scholar
Chappell, B. W. & White, A. J. R. 1982. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Kepin, Zu& Guangchi, Tu (eds), Geology of granites and their metallogenic relationships 87101. Beijing: Science Press.Google Scholar
DePaolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. NATURE 291, 193–6.CrossRefGoogle Scholar
Didier, J. 1973. Granites and their enclaves. The bearing of enclaves on the origin of granites, 2, Developments in Petrology Series No. 3, 2756. Amsterdam: Elsevier.Google Scholar
Didier, J. 1987. Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. GEOL RDSCH 76, 4150.CrossRefGoogle Scholar
Didier, J., Duthou, J.-L. & Lameyre, J. 1982. Mantle and crustal granites: genetic classification of orogenic granites and the nature of their enclaves. J VOLCANOL GEOTHERM RES 14 125132.CrossRefGoogle Scholar
Didier, J. & Dupraz, J. 1985. Magmatic and metasomatic cordierites in the Velay Granitic Massif. In The Crust, The Significance of Granites-Gneisses in the Lithosphere, 3577. Athens: Theophrastus.Google Scholar
Dostal, J., Dupuy, C. & Leyreloup, A. 1980. Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France-Implications for the lower crust. EARTH PLANET SCI LETT 50, 3140.CrossRefGoogle Scholar
Downes, H. & Dupuy, C. 1987 Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. EARTH PLANET SCI LETT 82, 121–35.CrossRefGoogle Scholar
Downes, H. & Duthou, J.-L. 1988. Isotopic and trace-element arguments for the lower-crust origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). CHEM GEOL 68, 291308.Google Scholar
Downes, H. & Leyreloup, A. 1986. Granulitic xenoliths from the French Massif Central: Petrology, Sr and Nd isotope systematics and model age estimates. In Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H. (eds) Nature of the Lower Continental Crust. GEOL SOC LONDON SPEC PUBL 24, 319330.CrossRefGoogle Scholar
Downes, H., Dupuy, C. & Leyreloup, A. F. 1990. Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower crustal xenoliths (French Massif Central). CHEM GEOL 83, 209–31.Google Scholar
Downes, H., Kempton, P. D., Briot, D., Harmon, R. S. & Leyreloup, A. F. 1991. Pb- and O-isotope systematics in granulite facies xenoliths, French Massif Central: Implications for crustal processes. EARTH PLANET SCI LETT 102, 342–57.Google Scholar
Dupraz, J. 1983. Evolution du complexe anatectique du Velay: genèse de la cordiérite. Thèse 3ème Cycle, Université de Clermont-Ferrand.Google Scholar
Dupuy, C., Leyreloup, A. & Verniers, J. 1977. The lower continental crust of the Massif Central (Bournac, France)- with special reference to REE, U and Th composition, evolution heat flow production. PHYS CHEM EARTH 11, 401–16.CrossRefGoogle Scholar
Duthou, J.-L., Cantagrel, J. M., Didier, J. & Vialette, Y. 1984. Palaeozoic granitoids from the French Massif Central: age and origin studied by 87Rb-87Sr system. PHYS EARTH PLANET INTERIORS 35, 131–44.CrossRefGoogle Scholar
Fowler, M. B. 1988. Ach'uaine hybrid appinite pipes: Evidence for mantle-derived shoshonitic parent magmas in Caledonian granite genesis. GEOLOGY 16, 1026–30.2.3.CO;2>CrossRefGoogle Scholar
Ledru, P., Dallain, C., Lardeau, J. M. & Marignac, C. 1991. Tectonic evolution of the Velay granito-migmatitic dome, French Massif Central. TERRA ABST 3, (1-2).Google Scholar
Leyreloup, A., Dupuy, C. & Andriambolona, R. 1977. Catazonal xenoliths in French Neogene volcanic rocks: composition of the lower crust, Part 2. Chemical composition and consequences of the evolution of the French Massif Central Precambrian crust. CONTRIBUT MINERAL PETROL 62, 283300.CrossRefGoogle Scholar
McCulloch, M. T. & Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. EARTH PLANET SCI LETT 58, 5164.CrossRefGoogle Scholar
Nakamura, N. 1974 Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. GEOCHIM COSMOCHIM ACTA 38, 757–75.Google Scholar
Pearce, J. A., Harris, N. & Tindle, A. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.CrossRefGoogle Scholar
Pin, C. 1989. Essai sur la chronologie et l'évolution géodynamique de la chaîne hercynienne d'Europe. Dr d'Etat Thesis, Blaise Pascal University, Clermont-Ferrand.Google Scholar
Pin, C. & Duthou, J.-L. 1990. Sources of Hercynian granitoids from the French Massif Central: Inferences from Nd isotopes and consequences for crustal evolution. CHEM GEOL 83, 281–96.CrossRefGoogle Scholar
Pin, C. & Lancelot, J. R. 1982. U-Pb dating of an early Palaeozoic bimodal magmatism in the French Massif Central and its further metamorphic evolution. CONTRIB MINERAL PETROL 79, 112.CrossRefGoogle Scholar
Pitcher, W. S. 1982. Granite type and tectonic environment. In Hsu, K. (ed) Mountain building processes 1-3, 1940. London: Academic Press.Google Scholar
Poli, G., Ghezzo, C. & Conticelli, S. 1989. Geochemistry of granitic rocks from the Hercynian Sardinia-Corsica batholith: Implications for magma genesis. LITHOS 23, 247–6.CrossRefGoogle Scholar
Shaw, A. 1991. The petrogenesis of Hercynian granites of the French Massif Central. Ph.D. Thesis, Birkbeck College, University of London.Google Scholar
Stephansson, O. 1975. Polydiapirism of granitic rocks in the Svecofenrian of Central Sweden. PRECAMBRIAN RES 2, 189214.CrossRefGoogle Scholar
Stephens, W. E. & Halliday, A. N. 1984. Geochemical contrasts between late Caledonian granitoid plutons of northern, central and southern Scotland. TRANS SOC EARTH SCI 75, 259–73.CrossRefGoogle Scholar
Thirlwall, M. F. 1982. A triple-filament method for rapid and precise analysis of rare-earth elements by isotope dilution. CHEM GEOL 35, 155–66.CrossRefGoogle Scholar
Thirlwall, M. F. 1992. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. CHEM GEOL ISOTOPE GEOSCI 94, 85104.CrossRefGoogle Scholar
Thirlwall, M. F. & Burnard, P. 1990. Pb-Sr-Nd isotope and chemical study of the origin of undersaturated and oversaturated shoshonitic magmas from the Borralan pluton, Assynt, NW Scotland. J GEOL SOC LOND 147 259–69Google Scholar
Turpin, L., Velde, D. & Pinte, G. 1988. Geochemical comparisons between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb-Sr-Nd isotope constraints on their origin. EARTH PLANET SCI LETT 87, 7386.Google Scholar
Turpin, L., Cuney, M., Friedrich, M., Bouchez, J.-L. & Auberin, M. 1990. Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. CONTRIB MINERAL PETROL 104, 163–72.CrossRefGoogle Scholar
Voshage, H., Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S.Raczek, I. & Demarchi, G. 1990. Isotopic evidence from the Ivrea zone for a hybrid lower crust formed by magmatic underplating. NATURE 347, 731–6.Google Scholar
White, A. J. R. & Chappel, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1983. Granitoid types and their distribution in the Lachlan Fold belt, southeastern Australia. GEOL SOC AM MEM 159, 2133.Google Scholar
Williamson, B. J. 1991. The petrology of the Velay granite complex, Massif Central, France. Ph.D. Thesis, Birkbeck College, University of London.Google Scholar
Wright, T. L. & Doherty, P. C. 1970. A linear programming and least squares computer method of solving petrological mixing problems. BULL GEOL SOC AM 81, 19952008.CrossRefGoogle Scholar
Wyllie, P. S. 1983a. Experimental studies on biotite- and muscovite-granites and some crustal magmatic sources. In Atherton, M. P. & Gribble, C. D. eds) Migmatites, melting and metamorphism, 1226. Orpington: Shiva.Google Scholar
Wyllie, P. S. 1983a. Experimental and thermal constraints on the deep-seated parentage of some granitoid magmas in subduction zones. In Atherton, M. P. & Gribble, C. (eds) Migmatites, melting and metamorphism, 3751. Orpington: Shiva.Google Scholar