Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:08:42.992Z Has data issue: false hasContentIssue false

Phylogenetic relationships of Palaeogene ziphodont eusuchians and the status of Pristichampsus Gervais, 1853

Published online by Cambridge University Press:  24 September 2013

Christopher A. Brochu*
Affiliation:
Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242USA Email: [email protected]

Abstract

Eusuchians with deep snouts and labiolingually compressed teeth are known from the Palaeogene of Laurasia. These are usually referred to Pristichampsinae, but the type species, Pristichampsus rollinati, is based on insufficiently diagnostic material and should be treated as a nomen dubium. At least two Lutetian species formerly referred to Pristichampsus can be recognised – Boverisuchus magnifrons in Germany and possibly elsewhere in Europe, and Boverisuchus vorax, new combination, in western North America. Material from the middle Eocene of Italy and Texas may represent distinct species. A phylogenetic analysis confirms their close relationship and also supports a relationship with two Asian forms – early Eocene Planocrania datangensis and Palaeocene Planocrania hengdongensis. The name Planocraniidae Li 1976 is applied to this group. A distinctive quadrate with a prominent dorsal peak between medial and lateral hemicondyles is known only in Boverisuchus, and although the teeth of Planocrania are flattened, they are not serrated. Planocraniids maintain a phylogenetic position as the sister group to Crocodyloidea+Alligatoroidea, but this part of the tree is unstable and discovery of older, more primitive planocraniids will help resolve conflicts on the phylogenetic relationships of extant crocodylian lineages.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Aguilera, O. A., Riff, D. & Bocquetin-Villanueva, J. C. 2006. A new giant Purussaurus (Crocodyliformes, Alligatoridae) from the Upper Miocene Urumaco Formation, Venezuela. Journal of Systematic Palaeontology 4, 221–32.Google Scholar
Alexander, J. P. & Burger, B. J. 2001. Stratigraphy and taphonomy of Grizzly Buttes, Bridger Formation, and the Middle Eocene of Wyoming. In Gunnell, G. F. (ed.) Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats, 165–96. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Andrews, C. W. 1914. On the Lower Miocene vertebrates from British East Africa, collected by Dr. Felix Oswald. Quarterly Journal of the Geological Society of London, 70, 163–86.CrossRefGoogle Scholar
Antunes, M. T. 1975. Iberosuchus, crocodile sebecosuchien nouveau, l'Eocene ibérique au Nord de la chaine centrale, et l'origine du canyon de Nazaré. Comunicações dos Serviços Geológicos de Portugal 59, 285330.Google Scholar
Antunes, M. T. 1986. Iberosuchus et Pristichampsus, crocodiliens de l'Éocène données complémentaires, discussion, distribution, stratigraphique. Ciências da Terra 8, 111–22.Google Scholar
Astre, G. 1931. Les crocodiliens fossiles des terrains Tertiaires sous-pyrénéens. Bulletin de la Société d'Histoire Naturelle de Toulouse 61, 2571.Google Scholar
Augé, M., Duffaud, S., Lapparent de Broin, F. de, Rage, J. C. & Vasse, D. 1997. Les amphibiens et les reptiles de Prémontré (Cuisien, Bassin parisien): une herpétofaune de référence pour l'Eocène inférieur. Géologie de la France 1, 2333.Google Scholar
Bartels, W. S. 1980. Early Cenozoic reptiles and birds from the Bighorn Basin, Wyoming. University of Michigan Papers in Paleontology 24, 7380.Google Scholar
Bell, C. J., Gauthier, J. A. & Bever, G. S. 2010. Covert biases, circularity, and apomorphies: a critical look at the North American Quaternary Herpetofaunal Stability Hypothesis. Quaternary International 217, 3036.Google Scholar
Berg, D. E. 1966. Die Krokodile, insbesondere Asiatosuchus und aff. Sebecus?, aus dem Eozän von Messel bei Darmstadt/Hessen. Abhandlungen des Hessischen Landesamtes für Bodenforschung 52, 1105.Google Scholar
Berg, D. E. 1969. Characteristic crocodiles of the Paleogene in Europe. Mémoires du Bureau de Recherches Géologiques et Minières 69, 7375.Google Scholar
Blainville, H. M. 1835. Système d'Herpetologie. Paris: Museum National d'Histoire Naturelle.Google Scholar
Bona, P. 2007. Una nueva especie de Eocaiman Simpson (Crocodylia, Alligatoridae) del Paleoceno Inferior de Patagonia. Ameghiniana 44, 435–45.Google Scholar
Bramble, D. M. & Hutchison, J. H. 1971. Biogeography of continental Tertiary Chelonia and Crocodilia of far-western United States. Geological Society of America Abstracts with Programs 3, 8687.Google Scholar
Brochu, C. A. 1997. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Systematic Biology 46, 479522.Google Scholar
Brochu, C. A. 1999. Phylogeny, systematics, and historical biogeography of Alligatoroidea. Society of Vertebrate Paleontology Memoir 6, 9100.Google Scholar
Brochu, C. A. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences 31, 357–97.Google Scholar
Brochu, C. A. 2004. A new gavialoid crocodylian from the Late Cretaceous of eastern North America and the phylogenetic relationships of thoracosaurs. Journal of Vertebrate Paleontology 24, 610–33.Google Scholar
Brochu, C. A. 2006. Osteology and phylogenetic significance of Eosuchus minor (Marsh 1870), new combination, a longirostrine crocodylian from the Late Paleocene of North America. Journal of Paleontology 80, 162–86.Google Scholar
Brochu, C. A. 2007. Morphology, relationships and biogeographic significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zoological Journal of the Linnean Society 150, 835–63.Google Scholar
Brochu, C. A. 2010. A new alligatoroid from the Lower Eocene Green River Formation of Wyoming and the origin of caimans. Journal of Vertebrate Paleontology 30, 1109–26.Google Scholar
Brochu, C. A. 2011. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zoological Journal of the Linnean Society 163, S228–56Google Scholar
Brochu, C. A., Njau, J. K., Blumenschine, R. J. & Densmore, L. D. 2010. A new horned crocodile from the Plio–Pleistocene hominid sites at Olduvai Gorge, Tanzania. PLoS One 5, e9333.Google Scholar
Brochu, C. A., Parris, D. C., Grandstaff, B. S., Denton, R. & Gallagher, W. B. 2012. A new species of Borealosuchus (Crocodyliformes: Eusuchia) from the Late Cretaceous–Early Paleocene of New Jersey. Journal of Vertebrate Paleontology 32, 105–16.Google Scholar
Brochu, C. A. & Storrs, G. W. 2012. A giant crocodile from the Plio–Pleistocene of Kenya, the phylogenetic relationships of Neogene African crocodylines, and the antiquity of Crocodylus in Africa. Journal of Vertebrate Paleontology 32, 587602.Google Scholar
Buffetaut, E. 1978. Crocodilian remains from the Eocene of Pakistan. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 156, 262–83.Google Scholar
Buffetaut, E. 1982a. A ziphodont mesosuchian crocodile from the Eocene of Algeria and its implications for vertebrate dispersal. Nature 300, 176–78.Google Scholar
Buffetaut, E. 1982b. Un problème de paléobiogéographie continentale: crocodilens mésosuchiens ziphodontes de l'Éocène européen. Bulletin de la Société Géologique de France 24, 1101–07.Google Scholar
Buffetaut, E. 1985. Les crocodiliens de l'Eocene Inferieur de Dormaal (Brabant, Belgique). Bulletin de la Société Belge de Géologie 94, 5159.Google Scholar
Buffetaut, E. 1986. Un mésosuchien ziphodonte dans l'Eocene superieur de la Liviniére (Hérault, France). Geobios 19, 101–08.Google Scholar
Buffetaut, E. 1988. The ziphodont mesosuchian crocodile from Messel: a reassessment. Courier Forschungsinstitut Senckenberg 107, 211–21.Google Scholar
Buffetaut, E. 1989. A new ziphodont mesosuchian crocodile from the Eocene of Algeria. Palaeontographica Abteilung A 208, 110.Google Scholar
Busbey, A. B. 1986. Pristichampsus cf. P. vorax (Eusuchia, Pristichampsinae) from the Uintan of West Texas. Journal of Vertebrate Paleontology 6, 101–03.Google Scholar
Campos, Z., Sanaiotti, T. & Magnusson, W. E. 2010. Maximum size of dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807), in the Amazon and habitats surrounding the Pantanal, Brazil. Amphibia-Reptilia 31, 439–42.Google Scholar
Cantino, P. D. & de Queiroz, K. 2007. PhyloCode, version 4b.Google Scholar
Caraven-Cachin, A. 1880. Description d'un fragment de crane de Crocodilus rollinati des grès éocènes du Tarn. Bulletin de la Société Géologique de France 8, 368–69.Google Scholar
Cuvier, G. 1824. Recherches Sur les Ossemens Fossiles, où l'On Rétablit les Caractères de Plusieurs Animaux Dont les Révolutions du Globe Ont Détruit les Espèces. Paris: G. Doufour et Ed. D'Ocagne.Google Scholar
D'Amore, D. C. & Blumenschine, R. J. 2009. Komodo monitor (Varanus komodoensis) feeding behavior and dental function reflected through tooth marks on bone surfaces, and the application to ziphodont paleobiology. Paleobiology 35, 525–52.CrossRefGoogle Scholar
Daudin, F. M. 1802. Histoire Naturelle, Générale et Particulière des Reptiles, Volume II. Paris: Imprimerie de F. Dufart.Google Scholar
Lapparent de Broin, F. de, Merle, D., Fontana, M., Ginsburg, L., Hervat, P., Le Calvez, Y. & Riveline, J. 1993. Une faune continentale a vertébrés dans le Lutétien supérieur de Guitrancourt (Yvelines) et son environnement. Bulletin d'Information des Géologues du Bassin de Paris 30, 316.Google Scholar
De Vis, C. W. 1905. Fossil vertebrates from New Guinea. Annals of the Queensland Museum 6, 2631.Google Scholar
Delfino, M., Piras, P. & Smith, T. 2005. Anatomy and phylogeny of the gavialoid Eosuchus lerichei from the Paleocene of Europe. Acta Palaeontologica Polonica 50, 565–80.Google Scholar
Delfino, M., Codrea, V., Folie, A., Dica, P., Godefroit, P. & Smith, T. 2008a. A complete skull of Allodaposuchus precedens Nopcsa, 1928 (Eusuchia) and a reassessment of the morphology of the taxon based on the Romanian remains. Journal of Vertebrate Paleontology 28, 111–22.Google Scholar
Delfino, M., Martin, J. E. & Buffetaut, E. 2008b. A new species of Acynodon (Crocodylia) from the Upper Cretaceous (Santonian–Campanian) of Villaggio del Pescatore, Italy. Palaeontology 51, 1091–06.Google Scholar
Densmore, L. D. 1983. Biochemical and immunological systematics of the order Crocodilia. In Hecht, M. K., Wallace, B. & Prance, G. H. (eds) Evolutionary Biology 16, 397465. New York: Plenum Press.Google Scholar
Domning, D. P., Emry, R. J., Portell, R. W., Donovan, S. K. & Schindler, K. S. 1997. Oldest West Indian land mammal: rhinocerotoid ungulate from the Eocene of Jamaica. Journal of Vertebrate Paleontology 17, 638–41.Google Scholar
Efimov, M. B. 1988. [The fossil crocodiles and champsosaurides of Mongolia and the USSR]. Trudy Somestnaya Sovetsko-Mongolskya Paleontologicheskaya Expeditsiya 36, 1108. [In Russian.]Google Scholar
Efimov, M. B. 1993. The Eocene crocodiles of the GUS – a history of development. Kaupia 3, 2325.Google Scholar
Franzen, J. L. 2005. The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Annales de Paléontologie 91(4), 329–35.Google Scholar
Gatesy, J., Amato, G., Norell, M., DeSalle, R. & Hayashi, C. 2003. Combined support for wholesale taxic atavism in gavialine crocodylians. Systematic Biology 52, 403–22.Google Scholar
Gervais, P. 1853. Observations relatives aux reptiles fossiles de France (première partie). Comptes Rendus de l'Académie des Sciences de Paris 36, 374–77.Google Scholar
Gilmore, C. W. 1910. Leidyosuchus sternbergii, a new species of crocodile from the Cretaceous Beds of Wyoming. Proceedings of the United States National Museum 38, 485502.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: Composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Museum of Paleontology, Papers in Paleontology 28, 197.Google Scholar
Gmelin, J. 1789. Linnei Systema Naturae. Leipzig: G. E. Beer.Google Scholar
Gray, J. E. 1831. Synopsis Reptilium; or Short Descriptions of the Species of Reptiles. Part I: Cataphracta. Tortoises Crocodiles, and Enaliosaurians. London: Treuttel, Wurtz & Co.Google Scholar
Groessens-Van Dyck, M. C. 1986. Les crocodiliens du gisement “Montien” continental de Hainin (Hainaut, Belgique) et leur environnement faunique. Annales de la Société Royal Zoologique de Belgique 116, 5560.Google Scholar
Gunnell, G. F., Bartels, W. S., Gingerich, P. D. & Torres, V. 1992. Wapiti Valley faunas: Early and Middle Eocene fossil vertebrates from the North Fork of the Shoshone River, Park County, Wyoming. Contributions from the University of Michigan Museum of Paleontology 28, 247–87.Google Scholar
Gunnell, G. F. & Bartels, W. S. 1999. Middle Eocene vertebrates from the Uinta Basin, Utah, and their relationship with faunas from the southern Green River Basin, Wyoming. Utah Geological Survey Miscellaneous Publication 99(1), 429–42.Google Scholar
Hanson, C. B. 1996. Stratigraphy and vertebrate faunas of the Bridgerian–Duchesnean Clarno Formation, north-central Oregon. In Prothero, D. R. & Emry, R. J. (eds) The Terrestrial Eocene–Oligocene Transition in North America, 206–39. New York: Cambridge University Press.Google Scholar
Harshman, J., Huddleston, C. J., Bollback, J. P., Parsons, T. J. & Braun, M. J. 2003. True and false gharials: a nuclear gene phylogeny of Crocodylia. Systematic Biology 52, 386402.Google Scholar
Hill, R. V. & Lucas, S. G. 2006. New data on the anatomy and relationships of the Paleocene crocodylian Akanthosuchus langstoni. Acta Palaeontologica Polonica 51, 455–64.Google Scholar
International Commission on Zoological Nomenclature (ICZN). 1999. International Code of Zoological Nomenclature (4th Ed.). London: International Trust for Zoological Nomenclature.Google Scholar
Kälin, J. A. 1933. Beiträge zur vergleichenden Osteologie des Crocodilidenschädels. Zoologische Jahrbücher 57, 535714.Google Scholar
Kälin, J. A. 1955. Crocodilia. In Piveteau, J. (ed) Traité de Paléontologie 5, 695784. Paris: Masson.Google Scholar
Kofron, C. P. 1992. Status and habitats of the three African crocodiles in Liberia. Journal of Tropical Ecology 8, 265–73.Google Scholar
Kotsakis, A., Delfino, M. & Piras, P. 2004. Italian Cenozoic crocodilians: taxa, timing and palaeobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 6787.Google Scholar
Kuhn, O. 1938. Die Crocodilier aus dem mittleren Eozän des Geiseltales bei Halle. Nova Acta Leopoldina 39, 313–28.Google Scholar
Kuhn, O. 1968. Die Vorzeitlichen Krokodile. Munich: Verlag Oeben.Google Scholar
Langston, W. 1975. Ziphodont crocodiles: Pristichampsus vorax (Troxell), new combination, from the Eocene of North America. Fieldiana: Geology 33, 291314.Google Scholar
Langston, W. 2008. Notes on a partial skeleton of Mourasuchus (Crocodylia, Nettosuchidae) from the Upper Miocene of Venezuela. Arquivos do Museu Nacional, Rio de Janeiro 66, 125–44.Google Scholar
Laurenti, J. N. 1768. Specimen Medicum, Exhibens Synopsin Reptilium Emendatum cum Experimentatis Circa Venena et Antiodota Reptilium Austriacorum. Vienna: J. T. de Trattnern.Google Scholar
Legasa, O., Buscalioni, A. D. & Gasparini, Z. 1993. The serrated teeth of Sebecus and the iberoccitanian crocodile, a morphological and ultrastructural comparison. Studia Geologica Salmanticensia 29, 127–44.Google Scholar
Li, J. 1976. Fossil of Sebecosuchia discovered from Nanxiong, Guangdong. Vertebrata PalAsiatica 14, 169–74.Google Scholar
Li, J. 1984. A new species of Planocrania from Hengdong, Hunan. Vertebrata PalAsiatica 22, 123–33.Google Scholar
Luiselli, L., Akani, G. C. & Capizzi, D. 1999. Is there any interspecific competition between dwarf crocodiles (Osteolaemus tetraspis) and Nile monitors (Varanus niloticus ornatus) in the swamps of central Africa? A study from southeastern Nigeria. Journal of Zoology 247, 127–31.Google Scholar
Magnusson, W. E. 1985. Habitat selection, parasites and injuries in Amazonian crocodilians. Amazoniana 9, 193204.Google Scholar
Magnusson, W. E. & Lima, A. P. 1991. The ecology of a cryptic predator, Paleosuchus trigonatus, in a tropical rainforest. Journal of Herpetology 25, 4148.Google Scholar
Marsh, O. C. 1871. Notice of some new fossil reptiles from the Cretaceous and Tertiary formations. American Journal of Science, Series 3 1, 447–59.Google Scholar
Marsh, O. C. 1872. Preliminary description of new Tertiary reptiles. American Journal of Science 4, 298309.Google Scholar
Martin, J. E. 2007. New material of the Late Cretaceous globidontan Acynodon iberoccitanus (Crocodylia) from southern France. Journal of Vertebrate Paleontology 27, 362–72.Google Scholar
Martin, J. E. 2010. Allodaposuchus Nopsca, 1928 (Crocodylia, Eusuchia), from the Late Cretaceous of southern France and its relationships to Alligatoroidea. Journal of Vertebrate Paleontology 30, 756–67.Google Scholar
Martin, J. E. & Buffetaut, E. 2008. Crocodilus affuvelensis Matheron, 1869 from the Late Cretaceous of southern France: a reassessment. Zoological Journal of the Linnean Society 152, 567–80.Google Scholar
Masters, S., Sandau, S., Burk, D. & Krumenacker, L. J. 2010. A unique Eocene crocodylian from the Uinta Basin, Utah. Journal of Vertebrate Paleontology 28, 131A.Google Scholar
Medem, F. 1958. The crocodilian genus Paleosuchus. Fieldiana: Zoology 39, 227–47.Google Scholar
Megirian, D. 1994. A new species of Quinkana (Eusuchia: Crocodylidae) from the Miocene Camfield Beds of northern Australia. The Beagle 11, 145–66.Google Scholar
Molnar, R. E. 1981. Pleistocene ziphodont crocodilians of Queensland. Records of the Australian Museum 33, 803–35.Google Scholar
Molnar, R. E., Worthy, T. H. & Willis, P. M. A. 2002. An extinct Pleistocene endemic mekosuchine crocodylian from Fiji. Journal of Vertebrate Paleontology 22, 612–28.Google Scholar
Mook, C. C. 1924. A new crocodilian from the Wasatch beds of Wyoming. American Museum Novitates 137, 14.Google Scholar
Mook, C. C. 1930. A new species of crocodilian from the Torrejon beds. American Museum Novitates 447, 111.Google Scholar
Mook, C. C. 1955. Two new genera of Eocene crocodilians. American Museum Novitates 1727, 14.Google Scholar
Nopcsa, F. 1928. The genera of reptiles. Palaeobiologica 1, 163–88.Google Scholar
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. Journal of Herpetology 23, 325–35.Google Scholar
Oaks, J. R. 2011. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–97.Google Scholar
Ortega, F., Buscalioni, A. D. & Gasparini, Z. 1996. Reinterpretation and new denomination of Atacisaurus crassiproratus (Middle Eocene; Issel, France) as cf. Iberosuchus (Crocodylomorpha, Metasuchia). Geobios 29, 353–64.Google Scholar
Ösi, A., Clark, J. M. & Weishampel, D. B. 2007. First report on a new basal eusuchian crocodyliform with multicusped teeth from the Upper Cretaceous (Santonian) of Hungary. Neues Jahrbuch für Geologie und Palaontologie Abhandlungen 243, 169–77.CrossRefGoogle Scholar
Ouboter, P. E. 1996. Ecological Studies on Crocodilians in Suriname: Niche Segregation and Competition in Three Predators. Amsterdam and New York: SPB Academic Publishing.Google Scholar
Owen, R. 1874. Monograph on the fossil Reptilia of the Wealden and Purbeck Formations. VI. Hylaeochampsa. Palaeontographical Society Monographs 27, 17.Google Scholar
Panadés I Blas, X., Loyal, R. S., Schleich, H. H. & Agrasar, E. L. 2004. Pristichampsine cranial remains from the basal redbed facies of the Subathu Formation (Himachal Pradesh, India) and some palaeobiogeographical remarks. PalArch 3, 18.Google Scholar
Piras, P., Colangelo, P., Adams, D. C., Buscalioni, A. D., Cubo, J., Kotsakis, A., Meloro, C. & Raia, P. 2010. The Gaviais-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships. Evolution and Development 12, 568–79.Google Scholar
Piras, P. & Buscalioni, A. D. 2006. Diplocynodon muelleri comb. nov., an Oligocene diplocynodontine alligatoroid from Catalonia (Ebro Basin, Lleida Province, Spain). Journal of Vertebrate Paleontology 26, 608–20.Google Scholar
Pol, D., Turner, A. H. & Norell, M. 2009. Morphology of the Late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of neosuchian phylogeny as related to the origin of Eusuchia. Bulletin of the American Museum of Natural History 324, 1103.Google Scholar
Prasad, G. V. R. & Lapparent de Broin, F. de 2002. Late Cretaceous crocodile remains from Naskal (India): comparisons and biogeographic affinities. Annales de Paléontologie 88, 1971.Google Scholar
Pregill, G. K. 1999. Eocene lizard from Jamaica. Herpetologica 55, 157–61.Google Scholar
Price, L. I. 1964. Sobre o cranio de um grande crocodilideo extinto do Alto Rio Jurua, Estado do Acre. Anais da Academia Brasiliera de Ciencias 36, 5966.Google Scholar
Puértolas, E., Canudo, J. I. & Caruzado-Caballero, P. 2011. A new crocodylian from the Late Maastrichtian of Spain: implications for the intitial radiation of crocodyloids. PLoS One 6, e20011.Google Scholar
Rauhe, M. & Rossmann, T. 1995. News about fossil crocodiles from the middle Eocene of Messel and Geiseltal, Germany. Hallesches Jahrbuch für Geowissenschaften 17, 8192.Google Scholar
Riley, J. & Huchzermeyer, F. W. 1999. African dwarf crocodiles in the Likouala swamp forests of the Congo Basin: habitat, density, and nesting. Copeia 1999, 313–20.Google Scholar
Roos, J., Aggarwal, R. K. & Janke, A. 2007. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary. Molecular Phylogenetics and Evolution 45, 663–73.Google Scholar
Rossmann, T. 1998. Studien an känozoischen Krokodilen: 2. Taxonomische Revision der Familie Pristichampsidae Efimov (Crocodilia: Eusuchia). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 210, 85128.Google Scholar
Rossmann, T. 1999. Studien an känozoischen Krokodilen: 1. Die paläoökologische Bedeutung des eusuchen Krokodils Pristichampsus rollinatii (Gray) für die Fossillagerstätte Grube Messel. Courier Forschungsinstitut Senckenberg 216, 8596.Google Scholar
Rossmann, T. 2000a. Skelettanatomische Beschreibung von Pristichampsus rollinatii (Gray) (Crocodilia, Eusuchia) aus dem Paläogen von Europa, Nordamerika und Ostasien. Courier Forschungsinstitut Senckenberg 221, 1107.Google Scholar
Rossmann, T. 2000b. Studien an känozoischen Krokodilen: 4. Biomechanische Untersuchung am Schädel und der Halswirbelsäule des paläogenen Krokodils Pristichampsus rollinatii (Eusuchia: Pristichampsidae). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 215, 397432.Google Scholar
Rossmann, T. 2000c. Studien an känozoischen Krokodilen: 5. Biomechanische Untersuchung am postkranialen Skelett des paläogenen Krokodils Pristichampsus rollintii (Eusuchia: Pristichampsidae). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 217, 289330.Google Scholar
Rossmann, T., Rauhe, M. & Ortega, F. 2000. Studies on Cenozoic crocodiles: 8. Bergisuchus dietrichbergi Kuhn (Sebecosuchia: Bergisuchidae n. fam) from the Middle Eocene of Germany, some new systematic and biological conclusions. Paläontologische Zeitschrift 74, 379–92.Google Scholar
Russell, D. E. 1982. Tetrapods of the Northwest European Tertiary Basin. Geologisches Jahrbuch 60, 574.Google Scholar
Sacco, F. 1896. Il coccodrilli del Monte Bolca. Memorie della Reale Accademia delle Scienze de Torino, Ser. 2 45, 7587.Google Scholar
Sachse, M. 2005. A remarkable fossiliferous mass flow deposit in the Eocene Eckfeld Maar (Germany) – sedimentological, taphonomical, and palaeoecological considerations. Facies 51, 173–84.Google Scholar
Sah, R. B. & Schleich, H. H. 1990. An Eocene crocodile record from Bhanskati Khola (Dumri area), South Nepal. Mitteilungen der Bayerischen Staatsammlung für Paläontologie und historische Geologie 30, 5156.Google Scholar
Sahni, A., Srivastava, S. & D'Souza, R. 1978. Eocene ziphodont Crocodilia from northwestern India. Géobios 11, 779–85.Google Scholar
Sahni, A. & Srivastava, V. C. 1976. Eocene rodents and associated reptiles from the Subathu Formation of northwestern India. Journal of Paleontology 50, 922–28.Google Scholar
Salisbury, S. W., Holt, T. R., Worthy, T. H., Sand, C. & Anderson, A. 2010. New material of Mekosuchus inexpectatus (Crocodylia: Mekosuchinae) from the Late Quaternary of New Caledonia, and the phylogenetic relationships of Australasian Cenozoic crocodylians. Journal of Vertebrate Paleontology 28, 155A.Google Scholar
Salisbury, S. W. & Willis, P. M. A. 1996. A new crocodylian from the Early Eocene of southeastern Queensland and a preliminary investigation of the phylogenetic relationships of crocodyloids. Alcheringa 20, 179227.Google Scholar
Shan, H.-Y., Wu, X.-C., Cheng, Y.-N. & Sato, T. 2009. A new tomistomine (Crocodylia) from the Miocene of Taiwan. Canadian Journal of Earth Sciences 46, 529–55.Google Scholar
Shirley, M. H., Oduro, W. & Beibro, H. Y. 2009. Conservation status of crocodiles in Ghana and Côte-d'Ivoire, West Africa. Oryx 43, 136–45.Google Scholar
Srivastava, S. & Kumar, K. 1996. Taphonomy and palaeoenvironment of the Middle Eocene rodent localities of northwestern Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 185211.Google Scholar
Stucky, R. K., Prothero, D. R., Lohr, W. G. & Snyder, J. R. 1996. Magnetic stratigraphy, sedimentology, and mammalian faunas of the early Uintan Washakie Formation, Sand Wash Basin, northwestern Colorado. In Prothero, D. R. & Emry, R. J. (eds) The Terrestrial Eocene–Oligocene Transition in North America, 4051. New York: Cambridge University Press.Google Scholar
Sudre, J. & Lecomte, G. 2000. Relations et position systématique du genre Cuisitherium Sudre et al., 1983, le plus dérivé des artiodactyles de l'Éocène inférieur d'Europe. Geodiversitas 22, 415–32.Google Scholar
Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0b10. Sunderland, MA: Sinauer Associates.Google Scholar
Ting, S., Bowen, G. J., Koch, P. L., Clyde, W. C., Wang, Y., Wang, Y. & McKenna, M. C. 2003. Biostratigraphic, chemostratigraphic and magnetostratigraphic study across the Paleocene–Eocene boundary in the Hengyang Basin, Hunan, China. Geological Society of America Special Paper 369, 521–35.Google Scholar
Ting, S.-Y., Tong, Y.-S., Clyde, W. C., Koch, P. L., Wang, Y.-Q., Bowen, G. J., Li, Q. & Snell, K. E. 2011. Asian early Paleogene chronology and mammalian faunal turnover events. Vertebrata PalAsiatica 49, 128.Google Scholar
Troxell, E. L. 1925. The Bridger crocodiles. American Journal of Science, 5th Ser. 9, 2972.Google Scholar
Turner, A. H. & Brochu, C. A. 2010. A reevaluation of the crocodyliform Acynodon from the Late Cretaceous of Europe. Journal of Vertebrate Paleontology 30, 178A.Google Scholar
Vasse, D. 1992. Les crocodiles de l'Aude: Aperçu du matériel connu et présentation de quelques nouvelles pièces. Bulletin de la Societé d'Études Scientifiques de l'Aude 92, 3741.Google Scholar
Vasse, D. 1995. Ischyrochampsa meridionalis n. g. n. sp., un crocodilien d'affinité gondwanienne dans le Crétacé supérieur du Sud de la France. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 8, 501–12.Google Scholar
Veléz-Juarbe, J. & Brochu, C. A. in press. Eocene crocodyliforms from Seven Rivers, Jamaica: implications for Neotropical crocodyliform biogeography and the status of Charactosuchus Langston, 1965. In Portell, R. W. & Domning, D. P. (eds) The Eocene Fossil Site of Seven Rivers, Jamaica: Geology, Paleontology, and Evolutionary and Biogeographic Implications. Dordrecht: Springer Verlag.Google Scholar
Weitzel, K. 1938. Pristichampsus rollinati (Gray) aus dem Mitteleozän von Messel. Notizblatt der Hessischen Landes-Amte Bodenforschung 19, 4748.Google Scholar
Westgate, J. W. 1989. Lower vertebrates from an estuarine facies of the Middle Eocene Laredo Formation (Claiborne Group), Webb County, Texas. Journal of Vertebrate Paleontology 9, 282–94.Google Scholar
Westgate, J. W. 2008. Vertebrates from a Middle Eocene estuarine mangrove community in the Rio Grande Embayment. Geological Society of America Abstracts with Programs 40, 3.Google Scholar
Willis, P. M. A. 1993. Trilophosuchus rackhami gen et sp. nov., a new crocodilian from the early Miocene limestones of Riversleigh, northwestern Queensland. Journal of Vertebrate Paleontology 13, 9098.Google Scholar
Willis, P. M. A. 1997. New crocodilians from the Late Oligocene White Hunter Site, Riversleigh, northwestern Queensland. Memoirs of the Queensland Museum 41, 423–38.Google Scholar
Willis, P. M. A. & Mackness, B. S. 1996. Quinkana babarra, a new species of ziphodont mekosuchine crocodile from the Early Pliocene Bluff Downs Local Fauna, northern Australia with a revision of the genus. Proceedings of the Linnean Society of New South Wales 116, 143–51.Google Scholar
Windolf, R. 1994. Krokodilreste aus dem Mittleren Eozän des Eckfelder Maares bei Manderscheid, Deutschland. Mainzer Naturwissenschaftlische Archiv 16, 177–87.Google Scholar
Wroe, S. 2002. A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their diversity: the myth of reptilian domination and its broader implications. Australian Journal of Zoology 50, 124.Google Scholar
Zonneveld, J.-P., Gunnell, G. F. & Bartels, W. S. 2000. Early Eocene fossil vertebrates from the southwestern Green River Basin, Lincoln and Uinta Counties, Wyoming. Journal of Vertebrate Paleontology 20, 369–86.Google Scholar