Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T20:13:15.807Z Has data issue: false hasContentIssue false

Pelagic trilobites as an example of deducing the life habits of extinct arthropods

Published online by Cambridge University Press:  03 November 2011

R. A. Fortey
Affiliation:
Department of Palaeontology, British Museum (Natural History), Cromwell Road, London SW7 5BD, England.

Abstract

This paper reviews the methods which have been used to deduce the life habits of trilobites. The most reliable conclusions are those that satisfy three independent criteria of evidence: (1) functional morphology of the exoskeleton; (2) analogy with living arthropods; and (3) geological evidence, as from facies relationships, or palaeogeography. Pelagic trilobites are one of the better examples for life habit reconstruction. The Ordovician trilobites that were most probably pelagic are those with hypertrophied eyes—Telephinidae, Opipeuteridae, Bohemillidae and Cyclopygidae—which satisfy the threefold requirements for evidence. Opipeuter, Carolinites (and other telephinids) were probably epipelagic, whereas cyclopygids and Bohemilla were likely to have been mesopelagic, living in exterior sites around the perimeter of Gondwana in the earlier Ordovician. These pelagics divide into two morphological groups: poorly streamlined, sluggish species somewhat like the living hyperiid Parathemisto, and well-streamlined species which are larger, and are considered to have been fast and active swimmers, with predatory habits. The streamlining of this group has been demonstrated by experiment. Other trilobites may also have been pelagic, but the evidence is less complete: Irvingella and its homeomorphs, and Remopleurides. Most Olenidae, however, which have been supposed to have been pelagic, were benthic forms inhabiting a specialised environment low in oxygen and possibly below the thermocline; only the leptoplastines may have been pelagic.

It is also shown that there are cases where ventral terrace ridges did not function to grip sediment during filter feeding. This applies not only to pelagic trilobites, but also to benthic ones in which the width and disposition of the doublure renders engagement with the sediment unlikely.

Type
Life and environment of fossil forms
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apollonov, M. K. 1975. Ordovician trilobite assemblages of Kazakhstan. FOSSILS STRATA 4, 375–80.CrossRefGoogle Scholar
Bergström, J. 1973. Organisation, life and systematics of trilobites. FOSSILS STRATA 2, 169.CrossRefGoogle Scholar
Brooks, H. K. 1957. Chelicerata, Trilobitomorphia, Crustacea (exclusive of Ostracoda) and Myriapoda. In Ladd, H. S. (ed.) Treatise on Marine Ecology and Paleoecology, Vol. 2, Paleoecology. MEM GEOL SOC AM 67, 895930.Google Scholar
Brusca, G. 1981. On the anatomy of Cystisoma (Amphipoda, Hyperiidae). J CRUSTACEAN BIOL 1, 358–75.CrossRefGoogle Scholar
Chatterton, B. D. E. & Ludvigsen, R. 1976. Silicified Middle Ordovician trilobites from the South Nahanni River area, District of Mackenzie, Canada. PALAEONTOGRAPHICA ABT A 154, 1106.Google Scholar
Childress, J. J. 1971. Respiratory adaptations to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. BIOL BULL MAR BIOL LAB WOODS HOLE 141, 109–21.CrossRefGoogle Scholar
Cisne, J. L., Molenock, J. & Rabe, B. D. 1980. Evolution in a cline: the trilobite Triarthrus along an Ordovician depth gradient. LETHAIA 13, 4759.CrossRefGoogle Scholar
Clarkson, E. N. K. 1973. Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). PALAEONTOLOGY 16, 735–63.Google Scholar
Clarkson, E. N. K. 1975. The evolution of the eye in trilobites. FOSSILS STRATA 4, 731.CrossRefGoogle Scholar
Datsenko, V. A. et al. 1968. Biostratigraphy and faunas of the Cambrian deposits of the Northwest part of the Siberian platform. TR NAUCHN-ISSLED INST GEOL ARKT (NIIGA) 155.Google Scholar
Dean, W. T. 1974. The trilobites of the Chair of Kildare limestone (Upper Ordovician) of eastern Ireland. Part 2. PALAEONTOGR SOC MONOGR 128, 6198.CrossRefGoogle Scholar
Dollo, L. 1910. La paléontologie éthologique. BULL SOC BELGE GEOL PALAEONTOL HYDROL 23, 377421.Google Scholar
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horshoe crab Euproops danae. PALEOBIOLOGY 3, 175–95.CrossRefGoogle Scholar
Fortey, R. A. 1974. A new pelagic trilobite from the Ordovician of Spitsbergen Ireland and Utah. PALAEONTOLOGY 17, 111–24.Google Scholar
Fortey, R. A. 1974a. The Ordovician trilobites of Spitsbergen. 1. Olenidae. SKR NOR POLARINST 160, 181.Google Scholar
Fortey, R. A. 1975. Early Ordovician trilobite communities. FOSSILS STRATA 4, 331–52.Google Scholar
Fortey, R. A. 1975a. The Ordovician trilobites of Spitsbergen. 2. SKR NOR POLARINST 162, 1125.Google Scholar
Fortey, R. A. 1979. Early Ordovician trilobites from the Catoche Formation (St George Group), western Newfoundland. BULL GEOL SURV CAN 321, 61114.Google Scholar
Fortey, R. A. 1980. Generic longevity in Lower Ordovician trilobites: relation to environment. PALEOBIOLOGY 6, 2431.CrossRefGoogle Scholar
Fortey, R. A. 1981. Prospectatrix genatenta (Stubblefield) and the trilobite superfamily Cyclopygacea. GEOL MAG 118, 603–14.CrossRefGoogle Scholar
Fortey, R. A. & Owens, R. M. (in press). The Arenig Series in South Wales. BULL BR MUS NAT HIST GEOL.Google Scholar
Grant, R. E. 1975. Methods and conclusions in functional analysis: a reply. LETHAIA 8, 31–4.CrossRefGoogle Scholar
Hammann, W. 1983. Calymenacea (Trilobita) aus dem Ordovizium von Spanien; ihre Biostratigraphie Okologie und Systematik. ABH SENCKENB NATURFORSCH GES 542, 1177.Google Scholar
Han, Nai-ren 1978. Panderian organs of Cyclopyge rotundata Lu (Trilobita). ACTA PALAEONTOL SIN 17, 351–6.Google Scholar
Henderson, R. A. 1983. Early Ordovician faunas from the Mount Windsor subprovince, northeastern Queensland. MEM ASSOC AUSTRALAS PALAEONTOL 1, 145–75.Google Scholar
Henningsmoen, G. 1957. The trilobite family Olenidae. SKR NOR VID-AKAD OSLO 1 MAT-NAT KL 1, 1303.Google Scholar
Henningsmoen, G. 1975. Moulting in trilobites. FOSSILS STRATA 4, 179200.CrossRefGoogle Scholar
Henry, J.-L. 1980. Trilobites ordoviciens du Massif Armoricain. MEM SOC GEOL MINER BRETAGNE 22, 1250.Google Scholar
Jago, J. B. 1973. Cambrian agnostid communities in Tasmania. LETHAIA 6, 405–21.CrossRefGoogle Scholar
Jell, P. A. 1978. Trilobite respiration and genal caeca. ALCHERINGA 2, 251–60.CrossRefGoogle Scholar
Lamont, A. 1967. Environmental significance of eye reduction in trilobites and recent arthropods: additional remarks. MAR GEOL 5, 377–8.CrossRefGoogle Scholar
Land, M. F. 1981. Optics of the eyes of Phronima and other deep-sea amphipods. J COMP PHYSIOL 145, 209–26.CrossRefGoogle Scholar
Legg, D. P. 1976. Ordovician trilobites and graptolites from the Canning Basin, western Australia. GEOL PALAEONTOL 10, 158.Google Scholar
Lhwyd, E. 1699. (Letter to Martin Lister) PHILOS TRANS R SOC LONDON 20, 279–80.Google Scholar
Ludvigsen, R. & Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. ALCHERINGA 7, 301–20.CrossRefGoogle Scholar
McNamara, K. J. 1983. Progenesis in trilobites. SPEC PAP PALAEONTOL 30, 5968.Google Scholar
McNamara, K. J. and Rudkin, D. 1984. Techniques of trilobite exuviation. LETHAIA 17, 153–73.CrossRefGoogle Scholar
McNeil Alexander, R. 1980. Animal Mechanics, 2nd edn. Oxford: Blackwell Scientific.Google Scholar
Marek, L. 1961. The trilobite family Cyclopygidae Raymond in the Ordovician of Bohemia. ROZPR USTRED USTAVU GEOL 28, 183.Google Scholar
Miller, J. 1975. Structure and function of trilobite terrace lines. FOSSILS STRATA 4, 155–78.CrossRefGoogle Scholar
Öpik, A. A. 1961. The geology and palaeontology of the headwaters of the Burke River, Queensland. BULL BUR MINER RESOUR GEOL GEOPHYS AUST 53, 1190.Google Scholar
Palmer, A. R. 1965. Trilobites of the late Cambrian Pterocephaliid biomere in the Great Basin, United States. PROF PAP U S GEOL SURV 493, 1105.Google Scholar
Pek, I. 1977. Agnostid trilobites of the central Bohemian Ordovician. SB GEOL VIED PRAHA 1977 (19), 744.Google Scholar
Price, D. & Magor, P. M. 1984. The ecological significance of variation in the generic composition of Rawtheyan (late Ordovician) trilobite faunas from North Wales, UK. GEOL J 19, 187200.CrossRefGoogle Scholar
Poulsen, V. 1965. An early Ordovician trilobite fauna from Bornholm. MEDD DAN GEOL FOREN 16, 49113.Google Scholar
Raymond, P. E. 1920. The appendages, anatomy and relationships of trilobites. MEM CONNECTICUT ACAD ARTS SCI 7, 1169.Google Scholar
Robison, R. A. 1972. Mode of life of agnostid trilobites. INT GEOL CONGR 24 SESS 7, 3340.Google Scholar
Rudwick, M. J. S. 1961. The feeding mechanism of the Permian brachiopod Prorichthofenia. PALAEONTOLOGY 3, 450–71.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. London: Hutchinson.Google Scholar
Rushton, A. W. A. 1967. The Upper Cambrian trilobite Irvingella nuneatonensis (Sharman). PALAEONTOLOGY 10, 339–48.Google Scholar
Schmalfuss, H. 1978. Structure, patterns, and function of cuticular terraces in Recent and fossil arthropods. ZOOMORPHOLOGIE 90, 1940.CrossRefGoogle Scholar
Schmalfuss, H. 1981. Structure, patterns and function of cuticular terraces in trilobites. LETHAIA 14, 331–41.CrossRefGoogle Scholar
Seilacher, A. 1985. Trilobite palaeobiology and substrate relationships. TRANS R SOC EDINBURGH EARTH SCI 76, 231–7.Google Scholar
Taylor, M. E. & Forester, R. M. 1979. Distributional model for marine isopod crustaceans and its bearing of early Palaeozoic Palaeozoogeography and continental drift. BULL GEOL SOC AM 90, 405–13.2.0.CO;2>CrossRefGoogle Scholar
Thomas, A. T. 1978. British Wenlock Trilobites. Part 1. PALAEONTOGR SOC MONOGR 132, 156.CrossRefGoogle Scholar
Towe, K. M. 1973. Trilobite eyes: calcified lenses in vivo. SCIENCE N Y 179, 1007–9.CrossRefGoogle ScholarPubMed
Westrop, S. R. 1983. The life habits of the Ordovician illaenine trilobite Bumastoides. LETHAIA 16, 1424.CrossRefGoogle Scholar
Whittard, W. F. 1961. The Ordovician trilobites of the Shelve Inlier, West Shropshire. Part 5. PALAEONTOGR SOC MONOGR 114, 163–96.CrossRefGoogle Scholar
Whittington, H. B. 1966. Phylogeny and distribution of Ordovician trilobites. J. PALAEONTOL 40, 696737.Google Scholar
Whittington, H. B., Dean, W. T., Fortey, R. A., Rickards, R. B., Rushton, A. W. A. & Wright, A. D. 1984. Definition of the Tremadoc Series and the series of the Ordovician System in Britain. GEOL MAG 121, 1733.CrossRefGoogle Scholar
Whittington, H. B. & Hughes, C. P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. PHILOS TRANS R SOC LONDON B 263, 235–78.Google Scholar
Tien-mei, Zhou 1977 Cyclopygidae. In Xiao-feng, Wang and Yu-qin, Jin (eds) Palaeontological handbook of central and southern China. 1. Lower Palaeozoic section. Beijing. (In Chinese).Google Scholar