Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:46:15.196Z Has data issue: false hasContentIssue false

Ontogeny of the trilobite Olenus wahlenbergi Westergård, 1922 from the upper Cambrian Alum Shales of Andrarum, Skåne, Sweden

Published online by Cambridge University Press:  03 November 2011

Euan N. K. Clarkson
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK
Cecilia M. Taylor
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JW, UK

Abstract

The upper Cambrian trilobite Olenus wahlenbergi Westergård, 1922 occurs abun- dantly in stinkstone concretions in the Alum Shales at Andrarum, in Skåne, southern Sweden (Olenus/Homagnostus obesus Zone). All growth stages from anaprotaspis onwards are represented, though the early stages are comparatively uncommon and complete specimens are rare. Fine details of structure are preserved, suitable for scanning electron microscopic study.

The protaspis has five axial rings, which in the adult become divided transversely and reduced to three, and the preglabellar field expands markedly in the holaspis. The librigena broadens during development and the eye, with its widely separated lenses is retained on the librigena throughout meraspid development. The visual surface dehisces during ecdysis from the early holaspid onwards, due to emplacement of the ocular suture. The hypostome apparently changes from a conterminant to a natant condition in the early holaspis, which is consistent with the growth of the preglabellar field at this stage. The transitory pygidium has a slightly serrated margin throughout development, but becomes entire when all thoracic segments have been liberated.

Cuticular sculpture changes dramatically throughout ontogeny. Large (Type A) tubercles appear on the fixigena in early meraspides; these become prominent and coalesce by the end of meraspid development. They are abruptly replaced by smaller (Type B) tubercles in the early holaspid, which link to form a rough network in mature specimens. Comparable Type A tubercles in early meraspid librigenae give rise to a strong polygonal caecal sculpture in holaspids, while a radial sculpture on the broadening anterior border develops independently. The significance of these cuticular changes remains obscure. A median occipital organ is described for the first time in the Olenidae.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, D. V. 1993. The nature of the stratigraphical record, 3rd edn. Chichester: Wiley.Google Scholar
Andersson, A., Dahlman, B., Gee, D. G. & Snail, S. 1985. The Scandinavian Alum Shales. SVER GEOL UNDERS SER Ca 56, 150.Google Scholar
Andersson, P. G. 1974. Andrarums alunbruk: Alun och ark, kalk och krut. Natur och Kultur In: Kring fyra gamla skdnska bruk, 158. Stockholm.Google Scholar
Barrientos, Y. & Laverack, M. S. 1986. The larval crustacean dorsal organ and its relationship to the trilobite median tubercle. LETHAIA 19, 309–13.CrossRefGoogle Scholar
Beecher, C. E. 1893. A larval form of Triarthrus. AM J SCI 46, 361–62.Google Scholar
Beecher, C. E. 1895. The larval stages of trilobites. AM GEOL 16, 166–97.Google Scholar
Bergström, J. & Gee, D. G. 1985. The Cambrian in Scandinavia. In Gee, D. G. & Sturt, B. A. (eds) The Caledonide OrogenScandinavia and related areas, 247–69. Chichester: Wiley.Google Scholar
Briggs, D. E. G. & Edgecombe, C. D. 1993. Beecher's Trilobite Bed. GEOLOGY TODAY May-June 1993, 97101.Google Scholar
Buchardt, B. 1992. Depositional geochemistry of the Cambro-Ordovician Alum Shale, p.27. In Geirsdottir, A., Norsoodahl, H. & Helgasdottir, G. (eds) Abstracts; 20th Nordic Geological Winter Meeting, 7-10 January, Reykjavik 1992, 186 pp. Reykjavik: Icelandic Geosciences Society, University of Iceland.Google Scholar
Chatterton, B. D. E. 1980. Ontogenetic studies of Middle Ordovician trilobites of the Esbataottine Formation, Mackenzie Mountains, Canada. PALAEONTOGRAPHICA A171, 174.Google Scholar
Chatterton, B. D. E., Siveter, D. J., Edgecombe, C. D. & Hunt, A. S. 1990. Larvae and relationships of the Calymenina. J PALEONTOL 64, 255–77.CrossRefGoogle Scholar
Chatterton, B. D. E., Johanson, Z. & Sutherland, G. 1994(a). Form of the trilobite digestive system: alimentary structures in Pterocephalia. J PALEONTOL 68, 294305.CrossRefGoogle Scholar
Chatterton, B. D. E., Edgecombe, G., Speyer, S. E., Hunt, A. S. & Fortey, R. 1994(b) Ontogeny and relationships of Trinucleoidea (Trilobita). J PALEONTOL 68, 523–40.CrossRefGoogle Scholar
Cisne, J. L. 1973. Beecher's Trilobite Bed revisited: ecology of an Ordovician deepwater fauna. POSTILLA 160, 125.Google Scholar
Clarkson, E. N. K. 1973. Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). PALAEONTOLOGY 16, 735–63.Google Scholar
Clarkson, E. N. K. 1988. Origin of marine invertebrate species; a critical review of microevolutionary transformations. PROC GEOL ASSOC 99, 153–72.CrossRefGoogle Scholar
Clarkson, E. N. K. & Zhang, X. G. 1991. Ontogeny of the Carboniferous trilobite Paladin eichwaldi shunnerensis (King 1914). TRANS R SOC EDINBURGH: EARTH SCI 82, 277–95.CrossRefGoogle Scholar
Cope, J. C. W. 1993. High resolution biostratigraphy. In Hailwood, E. A. & Kidd, R. B. (eds) High resolution stratigraphy. GEOL SOC LONDON SPEC PUB 70, 257–65.Google Scholar
Cowie, J. W. & Cribb, S. J. 1978. The Cambrian system. In Cohee, A. M. (ed.) Contributions to the Geological Time Scale, AM ASSOC PETROL GEOL STUDIES IN GEOLOGY 6, 355–62.Google Scholar
Dworatzek, M. 1987. Sedimentology and petrology of carbonate intercalations in the Upper Cambrian olenid shale facies of southern Sweden. SVER GEOL UNDERS SER C 819, 173.Google Scholar
Fortey, R. A. 1974. The Ordovician trilobites of Spitzbergen. I. Olenidae. NORSK POLARINST SKRIFT 160, 180.Google Scholar
Fortey, R. A. 1985. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. TRANS R SOC EDINBURGH: EARTH SCI 76, 219–30.Google Scholar
Fortey, R. A. 1990. Ontogeny, hypostome attachment and trilobite classification. PALAEONTOLOGY 33, 529–76.Google Scholar
Fortey, R. A. & Owens, R. M. 1989. The early Ordovician trilobite Beltella. PROC BRISTOL NAT SOC 49, 6979.Google Scholar
Fortey, R. A. & Owens, R. M. 1990. Evolutionary trends in invertebrates. Ch. 5 Trilobites. In McNamara, K. J. (ed.) Evolutionary Trends, 121–42. London: Belhaven Press.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1989. A geologic time scale. Cambridge: Cambridge University Press.Google Scholar
Henningsmoen, G. 1974. A comment. Origin of limestone nodules in the Lower Palaeozoic of the Oslo region. NOR GEOL TIDSKR 54, 401–12.Google Scholar
Henningsmoen, G. 1957. The Trilobite family Olenidae. SKR NOR VIDENSK AKAD OSLO 1. MAT-NATURVKL 1, 1303.Google Scholar
Hoffmann, A. & Reif, W. E. 1994. Rudolf Kaufmann's work on iterative evolution in the Upper Cambrian trilobite genus Olenus: A reappraisal. PALAONT Z 68, 7187.CrossRefGoogle Scholar
Hu, Chung-hung, 1971. Ontogeny and sexual dimorphism of Lower Paleozoic Trilobita. PALEONTOGR AM 7, 31155.Google Scholar
Jell, P. A. 1978. Trilobite respiration and genal caeca. ALCHERINGA 2, 251–60.CrossRefGoogle Scholar
Kaufmann, R. 1933a. Variationsstatistische Untersuchungen iiber die ‘Artabwandlung’ und ‘Artumbildung’ an der Oberkambrischen Trilobitengattung Olenus Dalm. ABH GEOL PALEONT INST UNIV GREIFSWALD 10, 154.Google Scholar
Kaufmann, R. 1933b. Die Einstufung der Olenus-Arten von Bornholm. PALAONT Z 15, 5763.CrossRefGoogle Scholar
Kaufmann, R. 1935. Exakt-statitische Biostratigraphie der Olenus-Arten von Sudoland. GEOL FOREN FORH 57, 1928.CrossRefGoogle Scholar
Ludvigsen, R. 1982. Upper Cambrian and Lower Ordovician Biostratigraphy of the Rabbitkettle Formation, Western District of Mackenzie. LIFE SCI CONTRIB R ONTARIO MUS 134, 1188.Google Scholar
McNamara, K. J. 1988. The abundance of heterochrony in the fossil record, Ch.15. In McKinney, M. L. (ed.) Heterochrony in Evolution: A multidisciplinary approach, 287325. New York & London: Plenum Press.CrossRefGoogle Scholar
Martinsson, A. 1974. The Cambrian of Norden. In Holland, C. H. (ed.) Cambrian of the British Isles, Norden and Spitzbergen, 185283. Chichester: Wiley.Google Scholar
Moberg, J. C. 1910. Geological guide to Andrarum. In Guide for the principal Silurian districts of Scania (with notes on some localities of Mesozoic beds), 45-61. GEOL FORENINGS I STOCKHOLM FORH 32, 45194.CrossRefGoogle Scholar
Müller, K. J. & Hinz, I. 1991. Upper Cambrian conodonts from Sweden. FOSSILS & STRATA 28, 1153.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1985. Skaracarida, a new order of Crustacea from the Upper Cambrian of Vastergotland, Sweden. FOSSILS & STRATA 17, 165.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1987. Morphology, ontogeny and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. FOSSILS & STRATA 19, 1124.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1988. External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. FOSSILS & STRATA 23, 170.CrossRefGoogle Scholar
Nicoll, R. S., Laurie, J. R., Shergold, J. H. & Nielsen, A. T. 1992. Preliminary correlation of latest Cambrian to early Ordovician sea level events in Australia and Scandinavia. In Webby, B. D. & Laurie, J. R. (eds) Global perspectives on Ordovician geology, 381–94. Rotterdam: Balkema.Google Scholar
Öpik, A. A. 1961. Alimentary caeca of agnostids and other trilobites. PALAEONTOLOGY 3, 410–38.Google Scholar
Öpik, A. A. 1967. The Mindyallan fauna of Northwestern Queensland. BUR MINER RESOUR AUST GEOL GEOPHYS BULL 64, 1133.Google Scholar
Persson, E. 1902. Till Kannedomen on Oleniderna I ‘Zonen med Eurycare och Leptoplastus’ vid Andrarum. GEOL FOREN FORH 231, 507–28.Google Scholar
Poulsen, C. 1923. Bornholms Olenuslag og deres fauna. DAN GEOL UNDERS SER 2 40, 183.Google Scholar
Poulsen, C. 1927. The Cambrian, Ozarkian and Canadian faunas of Northwest Greenland. MEDD GR0NLAND 70, 233–43.Google Scholar
Ramskold, L. & Chatterton, B. D. E. 1991. Revision and subdivision of the polyphyletic 'Leonaspis (Trilobita). TRANS R SOC EDINBURGH: EARTH SCI 32, 333–72.CrossRefGoogle Scholar
Raw, F. 1925. The development of Leptoplastus salteri and other trilobites. Q J GEOL SOC LONDON 81, 233–34.CrossRefGoogle Scholar
Raw, F. 1927. The ontogenies of trilobites and their significance. AM J SCI 14, 735.CrossRefGoogle Scholar
Robison, R. A. 1972. Mode of life of agnostid trilobites. INT GEOL CONGR 24TH SESS MONTREAL SECT 7, 3340.Google Scholar
Ross, R. J. 1951. Ontogenies of three Garden City (early Ordovician) trilobites. J PALEONTOLOL 25, 578–86.Google Scholar
Rushton, A. W. A. 1983. Trilobites from the Upper Cambrian Olenus zone in Central England. In Briggs, D. E. G. & Lane, P. D. (eds) Trilobites and other early arthropods: papers in honour of Professor H. B. Whittington, F.R.S. SPEC PAP PALAEONT 30, 107–40.Google Scholar
Stormer, L. 1930. Scandinavian Trinucleidae, with special references to Norwegian species and varieties. (SKR) NOR VIDENSK AKAD OSLO MAT-NATURV KL 4, 1111.Google Scholar
Stormer, L. 1942. Studies on trilobite morphology, Part II. The larval development, the segmentation and the sutures, and their bearing on trilobite classification. NOR GEOL TIDSKR 21, 49164.Google Scholar
Strand, T. 1927. The ontogeny of Olenus gibbosus. NOR GEOL TIDSKR 11, 320–29.Google Scholar
Thickpenny, A. 1984. The sedimentology of the Swedish Alum Shales. In Stow, D. A. V. (ed) Fine grained sediments: deep water processes and facies. GEOL SOC LONDON SPEC PUBL 15, 511–25.Google Scholar
Tullberg, S. A. 1880. Om Agnostus-arterna; de Kambriske aflagrin- garne vid Andrarum. SVER GEOL UNDERS SER C 42, 137.Google Scholar
Walcott, C. D. 1879. The Utica Slate and related formations. Fossils of the Utica Slate and metamorphoses of Triarthrus becki. TRANS ALBANY INST 10, 18ff.Google Scholar
Walcott, C. D. 1918. Cambrian geology and palaeontology (IV/4). Appendages of trilobites. SMITHSON MISC COLL 67, 115216.Google Scholar
Walossek, D. 1993. The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. FOSSILS & STRATA 32, 1202.CrossRefGoogle Scholar
Westergard, A. H. 1922. Sveriges Olenidskiffer. SVER GEOL UNDERS SER C 18, 1205.Google Scholar
Westergard, A. H. 1947. Supplementary notes on the Upper Cambrian trilobites of Sweden. SVER GEOL UNDERS SER C 489, 134.Google Scholar
Whittington, H. B. 1957. The ontogeny of trilobites. BIOL REV 32, 421–69.CrossRefGoogle Scholar
Whittington, H. B. 1958. Ontogeny of the trilobite Peltura scarabaeoides from PALAEONTOLOGY 1, 200–6.Google Scholar
Whittington, H. B. 1988. Hypostomes and ventral cephalic sutures in Cambrian trilobites. PALAEONTOLOGY 31, 577610.Google Scholar
Whitworth, P. H. 1970. Ontogeny of the Upper Cambrian trilobite Leptoplastus crassicornis (Westergaard) from the Upper Cambrian, Denmark. PALAEONTOLOGY 13, 100–11.Google Scholar
Wikman, H. & Bergstrom, J. 1987. Beskrivning till provisoriskaöversiktliga berggrunds-Kartan Malmö. SVER GEOL UNDERS SER Ba 40, 142.Google Scholar
Wilmot, N. V. 1990a. Cuticular structure of the agnostine trilobite Homagnostus obesus. LETHAIA 23, 8792.CrossRefGoogle Scholar
Wilmot, N. V. 1990b. Primary and diagentic microstructures in trilobite exoskeletons. HIST BIOL 4, 5165.CrossRefGoogle Scholar
Wilmot, N. V. 1991b. Sensory field maps of proetide trilobites. TRNAS R SOC EDINBURGH: EARTH SCI 82, 183–94.CrossRefGoogle Scholar