Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T13:44:09.305Z Has data issue: false hasContentIssue false

Ocean temperatures and isotopic compositions through time

Published online by Cambridge University Press:  03 November 2011

J. D. Hudson
Affiliation:
Department of Geology, University of Leicester, LEI 7RH, U.K.
T. F. Anderson
Affiliation:
Department of Geology, University of Illinoisat Urbana-Champaign, 245 Natural History Building, 1301 West Green Street, Urbana, IL 61801, U.S.A.

Abstract

Fossil assemblages can give quantitative estimates of palaeotemperatures, by comparison with modern biota, only in the recent geological past. Oxygen isotopic palaeotemperatures on calcareous or phosphatic fossils are potentially available for the whole Phanerozoic. Their reliability is limited by physiological effects (generally believed minor), preservation (for which criteria are available), and by uncertainty in the isotopic composition of ancient seawater. The latter is greatly affected by glaciation. In the Cenozoic, the relative contribution of ice-volume change and temperature change in producing isotopic variations can largely be resolved by analysing planktonic and benthic foraminifera in deep-sea cores. For earlier times only continental shelf deposits are available. In the Mesozoic, reasonable assumptions about ocean isotopic composition lead to palaeotemperature estimates that suggest generally higher temperatures than at present, particularly for mid- to high latitudes. This agrees with estimates based on biotic distributions. Late Palaeozoic glaciation is reflected in variable isotopic compositions in high palaeolatitude areas. In the earlier Palaeozoic, well-preserved fossils indicate either oceans enriched in 16O compared to today's or generally higher temperatures; controversy continues about the relative importance of the two effects.

Type
Evolution of the Earth's environment through time
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. F., (in press). Fossils as indicators of temperature–oxygen isotope ratios. In Briggs, D. E. G., & Crowther, P. R., (eds) Encyclopedia of palaeobiology. Oxford: Blackwell.Google Scholar
Anderson, T. F., & Arthur, M. A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and environmental problems. In Stable isotopes in sedimentary geology, SEPM Short Course Notes No. 10, 1151. Tulsa, Oklahoma: Society of Economic Palaeontologists and Mineralogists.Google Scholar
Arthur, M. A., Zachos, J. C., & Jones, D. S., 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. CRETACEOUS RES 8, 4354.CrossRefGoogle Scholar
Barrera, E., Humber, B. T., Savin, S. M., & Webb, P.-N., 1987. Antarctic marine temperatures: late Campanian through early Paleocene. PALEOCEANOGRAPHY 2, 2147.CrossRefGoogle Scholar
Barron, E. J., 1987. Eocene equator-to-pole surface ocean temperatures: a significant climate problem? PALEOCEANOGRAPHY 2, 729739.CrossRefGoogle Scholar
Birkenmaier, K., & Zastawniak, E., 1988. Late Cretaceous–early Tertiary flora of King George Island, West Antarctica: their stratigraphic distribution and palaeoclimatic significance. In Origin and Evolution of the Antarctic Biota, Abstracts Volume, Geological Society of London.Google Scholar
Boersma, A., Premoli Silva, I., & Shackleton, N. J., 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. PALEOCEANOGRAPHY 2, 287331.CrossRefGoogle Scholar
Brand, U., 1986. Paleoenvironmental analysis of Middle Jurassic (Callovian) ammonoids from Poland: trace elements and stable isotopes. J PALEONTOL 60, 293301.CrossRefGoogle Scholar
Brand, U., 1987. Biogeochemistry of nautiloids and paleoenvironmental aspects of Buckhorn seawater (Pennsylvanian), southern Oklahoma. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 61, 255264.CrossRefGoogle Scholar
Broecker, W. S., 1974. Chemical oceanography. New York: Harcourt-Brace Jovanovich.Google Scholar
Broecker, W. S., & Peng, T.-H., 1982. Tracers in the Sea. New York: Lamont-Doherty Geological Observatory.Google Scholar
Brouwers, E. M., Clemens, W. A., Spicer, R. A., Ager, T. A., Carter, D. E., & Sliter, W. V., 1987. Dinosaurs on the North Slope, Alaska: high latitude, latest Cretaceous environments. SCIENCE 237, 16081610.CrossRefGoogle ScholarPubMed
Buchardt, B., 1977. Oxygen isotope ratios from shell material from the Danish Middle Paleocene (Selandian) deposits and their interpretation as palaeotemperature indicators. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 22, 209230.CrossRefGoogle Scholar
Buchardt, B., 1978. Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. NATURE 275, 121123.CrossRefGoogle Scholar
Buchardt, B., & Weiner, S., 1981. Diagenesis of aragonite from Upper Cretaceous ammonites: a geochemical case-study. SEDIMENTOLOGY 28, 423438.CrossRefGoogle Scholar
Caputo, M. V., & Crowell, J. C., (1985). Migration of the glacial centers across Gondwana during Paleozoic era. GEOL SOC AM BULL 96, 10201036.2.0.CO;2>CrossRefGoogle Scholar
Collinson, M. E., Fowler, K., & Boulter, M. C., 1981. Floristic changes indicate a cooling climate in the Eocene of southern England. NATURE 291, 315317.CrossRefGoogle Scholar
Craig, H., & Gordon, L. I., 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Tongiorgi, E., (ed.) Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Consiglio Nazionale delle Richerche, Lab. di Geologia Nucleare.Google Scholar
Dickins, J. M., 1985. Late Palaeozoic glaciation. BMR J AUST GEOL GEOPHYS 9, 163169.Google Scholar
Dodd, J. R., & Stanton, R. J., 1981. Paleoecology, concepts and applications. New York: Wiley.Google Scholar
Douglas, R. G., & Savin, S. M., 1978. Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktonic foraminifera. MAR MICROPALEONTOL 3, 175196.CrossRefGoogle Scholar
Douglas, R. G., & Woodruff, F., 1981. Deep-sea benthic foraminifera. In Emiliani, C., (ed.) The oceanic lithosphere, The Sea, Vol. 7. New York: Wiley.Google Scholar
Emiliani, C., 1955. Pleistocene temperatures. J GEOL 63, 538578.CrossRefGoogle Scholar
Emiliani, C., Kraus, E. B., & Shoemaker, E. M., 1981. Sudden death at the end of the Mesozoic. EARTH PLANET SCI LETT 55, 317334.CrossRefGoogle Scholar
Epshteyn, O. G., 1978. Mesozoic–Cenozoic climates of Northern Asia and glacial-marine deposits. INT GEOL REV 20, 4958.CrossRefGoogle Scholar
Fairchild, I. J., & Spiro, B., 1987. Petrologic and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitzbergen. SEDIMENTOLOGY 34, 973989.CrossRefGoogle Scholar
Frakes, L. A., & Francis, J. E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. NATURE 333, 547549.CrossRefGoogle Scholar
Galbreath, G. J., Wolfe, J. A., Brouwers, E. M., Spicer, R. A., & Clemens, W. A., 1988. Arctic dinosaurs and terminal Cretaceous extinctions (letters & reply). SCIENCE 239, 1011.CrossRefGoogle Scholar
Given, R. K., & Lohmann, K. C., 1985. Derivation of the original isotopic composition of Permian marine cements. J SEDIMENT PETROL 55, 430439.Google Scholar
Gökdag, H., 1974. Sedimentpetrographische und isotopenchemische (O18, C13) Untersüchungen im Dachsteinkalk (Obernor-Rai) der nördlichen Kalkalpen. Inaugural-dissertation, Phillipps-Universität, Marburg/Lahn.Google Scholar
Gregory, R. T., & Taylor, H. P. Jr., (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence of 18O buffering of the oceans by deep (>5 km) seawater–hydrothermal circulation at mid-ocean ridges. J GEOPHYS RES 86, 27372755.CrossRefGoogle Scholar
Grossman, E. L., & Ku, T.-L., 1986. Carbon and oxygen isotopic fractionation in biogenic aragonite: temperature effects. CHEM GEOL (ISOT GEOSCI SECT) 59, 5974.CrossRefGoogle Scholar
Hallam, A., 1985. A review of Mesozoic climates. J GEOL SOC LONDON 142, 433445.CrossRefGoogle Scholar
Hallam, A., 1988. A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., (eds) Sea level changes—an integrated approach, pp. 261273. Tulsa, Oklahoma: SEPM Special Publication 42.CrossRefGoogle Scholar
Haq, B. U., 1984. Paleoceanography: a synoptic overview of 200 million years of ocean history. In Haq, B. U., & Milliman, J. D. (eds) Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. New York: Van Nostrand Reinhold.Google Scholar
Haq, B. U., Hardenbol, J., & Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. SCIENCE 235, 11561167.CrossRefGoogle ScholarPubMed
Hays, J. D., Imbrie, H., & Shackleton, N. J., 1976. Variations in the earth's orbit: pacemaker of the ice ages. SCIENCE 194, 11211132.CrossRefGoogle ScholarPubMed
Holland, H. D., 1984. The chemical evolution of the atmosphere and oceans. Princeton, N.J.: Princeton University Press.CrossRefGoogle Scholar
Holland, H. D., Lazar, B., & McCaffrey, M., 1986. Evolution of the atmosphere and ocean. NATURE 320, 2733.CrossRefGoogle Scholar
Hudson, J. D., 1989. Palaeoatmospheres in the Phanerozoic. J GEOL SOC LONDON 146, 155160.CrossRefGoogle Scholar
Imbrie, J., & Kipp, N. G., 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In Turekian, K. K. (ed.) Late Cenozoic glacial ages, 71181. New Haven: Yale University Press.Google Scholar
Jenkyns, H. C., & Clayton, C., 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. SEDIMENTOLOGY 33, 87106.CrossRefGoogle Scholar
Jordan, R., & Stahl, W., 1970. Isotopische paläotemperaturbestimmungen an jurassischen Ammoniten und grundsatzliche Voraussetzungen für diese Methode. GEOL JAHRB 89, 3362.Google Scholar
Kaltenegger, W., Preisinger, A., & Rogl, F., 1971. Paläotemperaturbestimmungen an aragonit-schaligen Mollusken aus dem Alpinen Mesozoicum. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 10, 273285.CrossRefGoogle Scholar
Karhu, J., & Epstein, S., 1986. The implication of the oxygen isotope records in co-existing cherts and phosphates. GEOCHIM COSMOCHIM ACTA 50, 17431756.CrossRefGoogle Scholar
Kemper, E., 1987. Das Klima der Kreide-Zeit. GEOL JAHRB A96, 5185.Google Scholar
Kennett, J. P., 1981. Marine geology. New Jersey: Prentice-Hall.Google Scholar
Killingley, J. S., 1983. Effects of diagenetic recrystallization on 18O/16O values of deep sea sediments. NATURE 301, 594.CrossRefGoogle Scholar
Knauth, L. P., & Epstein, S., 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. GEOCHIM COSMOCHIM ACTA 40, 10951108.CrossRefGoogle Scholar
Kolodny, Y., Luz, B., & Navon, O., 1983. Oxygen isotope ratios in phosphate of biogenic apatites. I. fish bone apatite—rechecking the rules of the game. EARTH PLANET SCI LETT 64, 398404.CrossRefGoogle Scholar
Kolodny, Y., & Raab, M., 1988. Oxygen isotopes in phosphatic fish remains from Israel: paleothermometry of tropical Cretaceous and Tertiary shelf waters. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 64, 5967.CrossRefGoogle Scholar
Kump, L. R., & Garrels, R. M., 1986. Modelling atmospheric O2 in the global sedimentary redox cycle. AM J SCI 286, 337360.CrossRefGoogle Scholar
Leg 113 Scientific party 1987. Leg 113 explores climatic changes. GEOTIMES 32, 1215.Google Scholar
Leg 114 Scientific party 1987. Leg 114 find complete sedimentary record. GEOTIMES 32, 2325.Google Scholar
Leg 119 Scientific party 1988. Leg 119 studies climatic history. GEOTIMES 33, 1416.Google Scholar
Longinelli, A., & Nuti, S., 1973. Revised phosphate–water isotopic temperature scale. EARTH PLANET SCI LETT 19, 373376.CrossRefGoogle Scholar
Luz, B., Kolodny, Y., & Kovach, J., 1984. Oxygen isotope variations in phosphate of biogenic apatites III Conodonts. EARTH PLANET SCI LETT 69, 255262.CrossRefGoogle Scholar
Marshall, J. D. 1981. Stable isotope evidence for the environment of lithification of some Tethyan limestones. NEUES JB GEOL PALÄONTOL, MH, 1981, 211224.Google Scholar
Matthews, R. K., & Poore, R. Z., 1980. Tertiary 18O record and glacio-eustatic sea-level fluctuations. GEOLOGY 8, 501504.2.0.CO;2>CrossRefGoogle Scholar
Mercer, J. H., 1983. Cenozoic glaciation in the southern hemisphere. ANN REV EARTH PLANET SCI 11, 99132.CrossRefGoogle Scholar
Middleton, P. D., Marshall, J. D., & Brenchley, P. J., 1988. Isotope evidence for oceanographic changes associated with the late Ordovician glaciation. INT SYMP ORDOVICIAN SYSTEM MEMORIAL UNIV ST JOHNS NEWFOUNDLAND, ABSTR VOL, 59.Google Scholar
Miller, K. G., Fairbanks, R. G., & Mountain, G. S., 1987a. Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. PALEOCEANOGRAPHY 2, 119.CrossRefGoogle Scholar
Miller, K. G., Janacek, T. R., Katz, M. E., & Keil, D. J., 1987b. Abyssal circulation and benthic foraminiferal changes near the Paleocene/Eocene boundary. PALEOCEANOGRAPHY 2, 741761.CrossRefGoogle Scholar
Muehlenbachs, K., 1986. Alteration of the oceanic crust and the 18O history of seawater. In Valley, J. W., Taylor, M. P. Jr., & O'Neil, J. R., (eds) Stable isotopes in high temperature geological processes (Reviews in mineralogy 16). Blacksburg, Va: Mineralogical Society of America.Google Scholar
Muehlenbachs, K., & Clayton, R. N., 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J GEOPHYS RES 81, 43654369.CrossRefGoogle Scholar
Parrish, J. T., & Spicer, R. A., 1988. Late Cretaceous terrestrial vegetation: a near-polar temperature curve. GEOLOGY 16, 2225.2.3.CO;2>CrossRefGoogle Scholar
Popp, B. N., Anderson, T. F., & Sandberg, P. A., 1986a. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. GEOL SOC AM BULL 97, 12621269.2.0.CO;2>CrossRefGoogle Scholar
Popp, B. N., Anderson, T. F., & Sandberg, P. A., 1986b. Textural, elemental, and isotopic variations among constituents in Middle Devonian limestones, North America. J SEDIMENT PETROL 56, 715727.Google Scholar
Prell, W. L., Imbrie, J., Martinson, D. G., Marley, J. J., Pisias, N. G., Shackleton, N. J., & Streeter, H. F., 1986. Graphic correlation of oxygen isotope stratigraphy: application to the later Quaternary. PALEOCEANOGRAPHY 1, 137162.CrossRefGoogle Scholar
Railsback, L. B., & Anderson, T. F., 1987. Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting fauna. GEOLOGY 15, 10021005.2.0.CO;2>CrossRefGoogle Scholar
Rao, C. P., & Green, D. C., 1982. Oxygen and carbon isotopes of early Permian cold-water carbonates, Tasmania, Australia. J SEDIMENT PETROL 52, 11111125.Google Scholar
Rowse, M. J., 1988. The diagenesis and geochemistry of Silurian limestones, Welsh borderlands. Unpubl. Ph.D. thesis, University of Liverpool.Google Scholar
Savin, S. M., 1977. History of the earth's surface temperature during the last 100 million years. ANN REV EARTH PLANET SCI 5, 319355.CrossRefGoogle Scholar
Schlanger, S. O., 1986. High frequency sea-level fluctuations in Cretaceous time: an emerging geophysical problem. In Hsü, K. J., (ed) Mesozoic and Cenozoic Oceans. Geodynamics series 15. Washington, D.C.: American Geophysical Union.Google Scholar
Shackleton, N. J., Hall, M. A., & Boersman, A., 1984. Oxygen and carbon isotope data from Leg 74 foraminifers. In Moore, T. C., & Rabinowitz, P. D., (eds) Initial Reports of the Deep Sea Drilling Project 74. Washington: U.S. Government Printing Office.Google Scholar
Shackleton, N. J. et al. , (17 authors ) 1984b. Oxygen isotope calibration at the onset of ice-rafting and history of glaciation in the North Atlantic region. NATURE 307, 620623.CrossRefGoogle Scholar
Shackleton, N. J., & Kennett, J. P., 1975a. Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279 and 281. In Kennett, J. P., & Houtz, R. E., (eds) Initial Reports of the Deep Sea Drilling Project 29, 743–55. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Shackleton, N. J., & Kennett, J. P., 1975b. Late Cenozoic oxygen and carbon isotopic changes at DSDP SITE 284: implications for glacial history of the Northern Hemisphere and Antarctica. In Kennett, J. P., & Houtz, R. E., (eds) Initial Reports of the Deep Sea Drilling Project 29, 801–7. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Shackleton, N. J., & Opdyke, N. D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. QUATERNARY RES 3, 3955.CrossRefGoogle Scholar
Shearman, D. J., & Smith, A. J., 1985. Ikaite, the parent mineral of jarrowite-type pseudomorphs. PROC GEOL ASSOC 96, 305‐313.CrossRefGoogle Scholar
Spaeth, C., Hoefs, J., & Vetter, U., 1971. Some aspects of isotopic composition of belemnites and related paleotemperatures. GEOL SOC AM BULL 82, 31393150.CrossRefGoogle Scholar
Stahl, W., & Jordan, R., 1969. General considerations on isotopic paleotemperature determinations and analyses on Jurassic ammonites, EARTH PLANET SCI LETT 6, 173178.CrossRefGoogle Scholar
Stanley, S. M., 1988. Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. AM J SCI 288, 334352.CrossRefGoogle Scholar
Stevens, G. R., & Clayton, R. N., 1971. Oxygen isotope studies on Jurassic and Cretaceous belemnites and their biogeographic significance. NEW ZEALAND J GEOL GEOPHYS 14, 829897.CrossRefGoogle Scholar
Thunell, R. C., Williams, D. F., & Howell, M., 1987. Atlantic–Mediterranean water exchange during the late Neogene. PALEOCEANOGRAPHY 2, 661678.CrossRefGoogle Scholar
Tourtelot, M. A., & Rye, R. O., 1969. Distribution of oxygen and carbon isotopes in fossils of late Cretaceous age, western interior region of North America. GEOL SOC AM BULL 80, 19031922.CrossRefGoogle Scholar
Tucker, M. E., 1986. Formerly aragonitic limestones associated with tillites in the late Proterozoic of Death Valley, California. J SEDIMENT PETROL 56, 818830.Google Scholar
Valentine, J. W., 1985. Are interpretations of ancient marine temperatures constrained by the presence of ancient marine organisms? In Sundquist, E. T., & Broecker, W. S., (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Washington D.C.: American Geophysical Union, Geophysical Monograph 32.Google Scholar
Veevers, J. J., & Powell, C., McA. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. GEOL SOC AM BULL 98, 475487.2.0.CO;2>CrossRefGoogle Scholar
Veizer, J., Fritz, P., & Jones, B., 1986. Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. GEOCHIM COSMOCHIM ACTA 50, 16791696.CrossRefGoogle Scholar
Veizer, J., & Fritz, P., 1976. Possible control of post-depositional alteration in oxygen isotope palaeotemperature determinations. EARTH PLANET SCI LETT 33, 266280.CrossRefGoogle Scholar
Wefer, G., 1982. Paläotemperaturbestimmungen mit Hilfe von Sauerstoffisotopen an Ammoniten und Foraminiferen des Apt und Alb. GEOL JAHRB A65, 273281.Google Scholar
Wolfe, J. A., 1985. Distribution of major vegetational types during the Tertiary. In Sundquist, E.T., & Broecker, W. S., (eds) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Washington D.C.: American Geophysical Union, Geophysical Monograph 32.Google Scholar
Wolfe, J. A., & Upchurch, G. R., 1987. North American nonmarine climates and vegetation during the Late Cretaceous. PALAEOGEOR PALAEOCLIMATOL PALAEOECOL 61, 3377.CrossRefGoogle Scholar
Woo, K. S., 1986. Isotopic-textural-chemical studies of Mid Cretaceous limestones: implications for carbonate diagenesis and paleoceanography. Unpublished Ph.D. thesis, University of Illinois.Google Scholar
Zempolich, W. G., Wilkinson, B. H., & Lohmann, K. C., 1988. Diagenesis of Late Proterozoic carbonates: the Beck Spring Dolomite of Eastern California. J SEDIMENT PETROL 58, 656672.Google Scholar