Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T21:37:38.332Z Has data issue: false hasContentIssue false

Magnetic susceptibility record of Chinese Loess

Published online by Cambridge University Press:  03 November 2011

G. Kukla
Affiliation:
Lamont–Doherty Geological Observatory of Columbia University, Palisades, New York 10964, U.S.A.
Z. S. An
Affiliation:
Xian Laboratory of Loess and Quaternary Geology, Academia Sinica, Shaanxi, China.
J. L. Melice
Affiliation:
Institut of Astronomy and Geophysics G. Lemaitre, Catholic University of Louvain, Louvain-la-Neuve, B1348, Belgium.
J. Gavin
Affiliation:
Lamont–Doherty Geological Observatory of Columbia University, Palisades, New York 10964, U.S.A.
J. L. Xiao
Affiliation:
Xian Laboratory of Loess and Quaternary Geology, Academia Sinica, Shaanxi, China.

Abstract

Records of the low field magnetic susceptibility at three sites in the Chinese Loess Plateau, each with sediments covering the last 2·5 Ma, were averaged and combined into a single stacked file whose dating is independent of astronomic chronology. The stack reveals orbital frequencies, which are in general agreement with the astronomically tuned oxygen isotope deep sea chronology in the upper part of the Brunhes epoch, but disagree prior to 0·5 Ma ago.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z. S. & Wei, L. Y. 1980. The fifth layer paleosols in the Lishi Loess and their palaeoclimatic significance. ACTA PEDOL SIN 17, 110.Google Scholar
An, Z. S., Kukla, G., Porter, S. & Xiao, J. (in print). Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years. OUATERN RES.Google Scholar
Burbanks, E. W. & Li, J. J. 1985. Age and palaeoclimatic significance of the loess of Lanzhou, north China. NATURE 316, 429–31.CrossRefGoogle Scholar
Burg, J. P. 1972. The relationship between maximum entropy spectra and maximum likehood spectra. GEOPHYS 37, 375–6.CrossRefGoogle Scholar
Eardley, A. J., Shuey, R. T., Gvosdetsky, V., Nash, W. P., Dane Picard, M., Grey, D. C. & Kukla, G. J. 1973. Lake cycles in the Bonneville Basin, Utah. GEOL SOC AM BULL 84, 211–16.2.0.CO;2>CrossRefGoogle Scholar
Fink, J. & Kukla, G. J. 1977. Pleistocene climates in Central Europe: At least 17 interglacials after the Olduvai event. QUATERN RES 7, 363–71.CrossRefGoogle Scholar
Heller, F. & Liu, T. S. 1982. Magnetostratigraphical dating of loess deposits in China. NATURE 300, 431–3.CrossRefGoogle Scholar
Heller, F. & Liu, T. S. 1984. Magnetism of Chinese loess deposits. J GEOPHYS RES 77, 125–41.Google Scholar
Heller, F., Beat, M., Wang, J., Li, H. & Liu, T. S. 1987. Magnetization and sedimentation history of loess in the Central Loess Plateau of China. In Liu, T. S. (ed.) Aspects of Loess Research pp. 147–63. Beijing: China Ocean Press.Google Scholar
Hovan, S. A., Rea, D. K., Pisias, N. G. & Shackleton, N. J. 1989. A direct link between the China loess and marine O18 records: aeolian flux to the north Pacific. NATURE 340, 296–8.CrossRefGoogle Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record, In Berger, A. L. et al. (eds) Milankovitch and Climate, Part I, pp. 169305. Boston: Reidel.Google Scholar
Imbrie, J. 1985. A theoretical framework for the Pleistocene ice ages. J GEOL SOC 142, 417–32.CrossRefGoogle Scholar
Johnson, R. G. 1979. Brunhes-Matuyama magnetic reversal dated at 790,000 yr B.P. QUATERN RES 17, 135–47.CrossRefGoogle Scholar
Kukla, G. 1975. Loess stratigraphy of Central Europe. In Butzer, K. W. & Isaac, G. L. (eds) After the Australopithecines, pp. 99188. The Hague: Mouton Publishers.CrossRefGoogle Scholar
Kukla, G. 1987. Loess stratigraphy in Central China. QUATERN SCI REV 6, 191219.CrossRefGoogle Scholar
Kukla, G. & Briskin, M. 1983. The age of the 4/5 isotopic stage boundary on land and in the oceans. PALAEOGEOGR PALAEOCLIM PALAEOECOL 42, 3545.CrossRefGoogle Scholar
Kukla, G., Heller, F., Liu, X. M., Xu, T. C., Liu, T. S. & An, Z. S. 1988. Pleistocene climates in China dated by magnetic susceptibility. GEOLOGY 16, 811–14.2.3.CO;2>CrossRefGoogle Scholar
Kukla, G. & An, Z. S. 1989. Loess Stratigraphy in Central China. PALAEOGEOGR PALAEOCLIM PALAEOECOL 72, 203–25.CrossRefGoogle Scholar
Li, J. J. & Feng, Z. D. 1988. Late Quaternary monsoon patterns on the Loess Plateau of China. EARTH SURF PROCESSES LANDFORMS 13, 125–35.Google Scholar
Liu, T. S. (ed.) 1985. Loess and the Environment. Beijing: China Ocean Press.Google Scholar
Liu, T. S. 1988. Loess in China. Beijing: China Ocean Press, and Berlin: Springer Verlag.Google Scholar
Liu, T. S. & An, Z. S. 1984. A preliminary magnetostratigraphic study of the Beihanzhai loess section. GEOCHEMICA 2, 134–7.Google Scholar
Liu, T. S. & Chang, T. H. 1962. The Huangtu (loess) of China. ACTA GEOL SIN 42, 114.Google Scholar
Liu, T. S., Gu, X. E., An, Z. S. & Fan, Y. X. 1981. The dust fall in Beijing, China on April 18, 1980. GEOL SOC AM SPEC PAP 186, 149–57.Google Scholar
Liu, T. S., An, Z. S., Yuan, B. Y. & Han, J. M. 1985. The loess–paleosol sequence in China and climatic history. EPISODES 8, 21–8.Google Scholar
Liu, X. M., Liu, T. S., Xu, T. C., Liu, C. & Chen, M. Y. 1987. A preliminary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu Province, In Liu, T. S. (ed.) Aspects of Loess Research, pp. 164–74. Beijing: China Ocean Press.Google Scholar
Lu, Y., Mortlock, A. J., Price, D. M. & Readhead, M. L. 1987. Thermoluminescence dating of coarse-grain quartz from the Malan Loess at Zhaitang section, China. QUATERN RES 28, 356–63.Google Scholar
Maher, B. A. 1986. Characterization of soils by mineral magnetic measurements. PHYS EARTH PLANET INTER 42, 7692.CrossRefGoogle Scholar
Maher, B. A. & Taylor, R. M. 1988. Formation of ultrafine-grained magnetite in soils. NATURE 336, 368–70.CrossRefGoogle Scholar
Mullins, C. E. 1977. Magnetic susceptibility of the soil and its significance in soil science: A review: J SOIL SCI 28, 233–46.CrossRefGoogle Scholar
Oades, H. M. & Townsend, W. N. 1963. The detection of ferromagnetic minerals in soils and clays. J SOIL SCI 14, 179–87.CrossRefGoogle Scholar
Prell, W. L., Imbrie, J., Martinson, D. G., Morley, J. J., Pisias, N.G., Shackleton, N. J. & Streeter, H. F. 1986. Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary. PALEOCEANOG 1, 137–62.CrossRefGoogle Scholar
Sasajima, S. & Wang, Y. Y. (eds) 1984. Recent Research on Loess in China. Kyoto, Japan: Kyoto University.Google Scholar
Sasajima, S., Wang, Y., Torii, M., Nishida, J. & Maenaka, K. 1984. Magneto- and chronostratigraphy revealed from the Luochuan Loess sequence in China and its relevance to the Quaternary climatic change. In Sasajima, S. & Wang, Y. (eds) Recent Research of Loess in China, pp. 211–32. Kyoto Inst. Nat. Hist.Google Scholar
Shen, C., Liu, T. S., Beer, J., Oeschger, H., Bonani, G., Suter, M. & Wofli, W. 1987. In Liu, T. S. (ed.) Aspects of Loess Research. Beijing: China Ocean Press.Google Scholar
Thompson, R. & Oldfield, F. 1986. Environmental Magnetism. London: Allen and Unwin.CrossRefGoogle Scholar
Tolenen, K. & Oldfield, F. 1986. The record of magnetic-mineral and heavy metal deposition at Regent Street Bog, Fredericton, New Brunswick, Canada. PHYSICAL EARTH PLANET INTERN 42, 5766.CrossRefGoogle Scholar
Torii, M., Yue, L. P., Hayashida, A., Maenaka, K., Yokoyama, T., Wang, Y. Y. & Sasajima, S. 1984. Natural remanent magnetization of loess-paleosol deposits in Luochuan area. In Sasajima, S. & Wang, Y. Y. (eds) Recent Research on Loess in China, pp. 3241. Kyoto, Japan: Kyoto University.Google Scholar