Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T16:10:17.222Z Has data issue: false hasContentIssue false

Late Archaean granites of the southeastern Yilgarn Block, Western Australia: age, geochemistry, and origin

Published online by Cambridge University Press:  03 November 2011

R. I. Hill
Affiliation:
R. I. Hill, Research School of Earth Sciences, The Australian National University, GPO Box 4, Canberra City, ACT 2601, Australia
B. W. Chappell
Affiliation:
B. W. Chappell, Department of Geology, The Australian National University, GPO Box 4, Canberra City, ACT 2601, Australia
I. H. Campbell
Affiliation:
I. H. Campbell, Research School of Earth Sciences, The Australian National University, GPO Box 4, Canberra City, ACT 2601, Australia

Abstract

Late Archaean granitic rocks from the southern Yilgarn Craton of Western Australia have a close temporal relationship to the basaltic and komatiitic volcanism which occurs within spatially associated greenstone belts. Greenstone volcanism apparently began ∼2715 Ma ago, whereas voluminous felsic magmatism (both extrusive and intrusive) began about 2690 Ma ago. A brief but voluminous episode of crust-derived magmatism ∼2690-2685 Ma ago resulted in the emplacement of a diverse assemblage of plutons having granodioritic, monzogranitic and tonalitic compositions. This early felsic episode was followed immediately by the emplacement of mafic sills, and, after a further time delay, by a second episode of voluminous crust-derived magmatism dominated by monzogranite but containing plutons covering a wide compositional range, including diorite, granodiorite and tonalite. The products of this 2665–2660 Ma magmatic episode now form a significant fraction of the exposed southern Yilgarn Craton. Later magmatism, which continued to at least 2600 Ma ago, appears largely restricted to rocks having unusually fractionated compositions.

The magmatic sequence basalt-voluminous crust-derived magmatism-later diverse magmatism, is interpreted in terms of a dynamically-based model for the ascent of the head of a new mantle plume. In this model basalts and komatiites are derived by decompression melting of rising plume material, and the crust-derived magmas result after conductive transport of heat from the top of the plume head into overlying continental crust. This type of magmatic evolution, the fundamentally bimodal nature of the magmatism, the presence of high-Mg volcanics (komatiites), and the areal extent of the late Archaean magmatic event, are all suggested to be characteristic of crustal reworking above mantle plumes rather than resulting from other processes, such as those related to subduction.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, N. J., Bettenay, L. F., Bickle, M. J. & Groves, D. I. 1981. Evolution of Archaean crust in the Eastern Goldfields province of the Yilgarn Block, Western Australia. GEOL SOC AUST SPEC PUBL 7, 491504.Google Scholar
Arriens, P. A. 1971. The Archaean geochronology of Australia. GEOL SOC AUST SPEC PUBL 3, 1123.Google Scholar
Barley, M. E., Eisenlohr, B. N., Groves, D. I., Perring, C. S. & Vearncombe, J. R. 1989. Late Archean convergent margin tectonics and gold mineralization: A new look at the Norseman-Wiluna belt, Western Australia. GEOLOGY, 17, 826–9.Google Scholar
Barley, M. E. & Groves, D. I. 1990. Deciphering the tectonic evolution of Archaean greenstone belts: the importance of contrasting histories to the distribution of mineralization in the Yilgarn Craton, Western Australia. PRECAMB RES 46, 320.Google Scholar
Bettenay, L. F. 1977. Regional geology and petrogenesis of Archaean granitoids in the Southeastern Yilgarn Block, Western Australia. Unpublished Ph.D. Thesis, University of Western Australia, Perth.Google Scholar
Browning, P., Groves, D. I., Blockley, J. G. & Rosman, K. J. R. 1987. Lead isotope constraints on the age and source of gold mineralization in the Archean Yilgarn Block, Western Australia. ECON GEOL 82, 971–86.CrossRefGoogle Scholar
Burnham, C. W. 1979. Magmas and hydrothermal fluids. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, 2nd edn, 71136. New York: Wiley.Google Scholar
Campbell, I. H., Griffiths, R. W. & Hill, R. I. 1989. Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. NATURE 339, 697–9.CrossRefGoogle Scholar
Campbell, I. H. & Griffiths, R. W. 1990. Implications of mantle plume structure for the origin of flood basalts. EARTH PLANET SCI LETT 99, 7993.Google Scholar
Campbell, I. H. & Hill, R. I. 1988. A two-stage model for the formation of the granite-greenstone terrains of the Kalgoorlie-Norseman area, Western Australia. EARTH PLANET SCI LETT 90, 1125.Google Scholar
Cassidy, K. F., Barley, M. E., Groves, D. I., Perring, C. S. & Hallberg, J. A. 1991. An overview of the nature, distribution and inferred tectonic setting of granitoids in the late-Archaean Norseman-Wiluna Belt. PRECAMB RES 51, 5183.CrossRefGoogle Scholar
Chappell, B. W. & Stephens, W. E. 1988. Origin of infracrustal (I-type) magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 7186.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I-type and S-type granites in the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 83, 126.Google Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.Google Scholar
Claoué-Long, J. C., Compston, W. & Cowden, A. 1988. The age of the Kambalda greenstones resolved by ion-microprobe: Implications for Archaean dating methods. EARTH PLANET SCI LETT 89, 239–59.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Campbell, I. H. & Gresham, J. J. 1986. Zircon xenocrysts from the Kambalda volcanics: Age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. EARTH PLANET SCI LETT 76, 299311.CrossRefGoogle Scholar
Compston, W., Williams, I. S. & McCulloch, M. T. 1987. Contrasting zircon U-Pb and model Sm-Nd ages for the Archaean Logue Brook granite. AUST J EARTH SCI 33, 193200.Google Scholar
Corfu, F., Krogh, T. E., Kwok, Y. Y. & Jensen, L. S. 1989. U-Pb geochronology in the south-western Abitibi greenstone belt, Superior Province. CAN J EARTH SCI 26, 1747–63.CrossRefGoogle Scholar
Davies, G. F. 1988a. Role of the lithosphere in mantle convection. J GEOPHYS RES 93, 10451–66.CrossRefGoogle Scholar
Davies, G. F. 1988b. Ocean bathymetry and mantle convection, 1. Large-scale flow and hot-spots. J GEOPHYS RES 93, 10467–80.CrossRefGoogle Scholar
Davies, G. F. & Richards, M. A. 1992. Mantle convection. J GEOL (in press).Google Scholar
Doepel, J. J. G. 1973. Norseman. WESTERN AUSTRALIA GEOL SURV 1:250 000 SERIES EXPLANATORY NOTES.Google Scholar
Gee, R. D. 1979. Structure and tectonic style of the Western Australian Shield. TECTONOPHYSICS 58, 327–69.CrossRefGoogle Scholar
Gee, R. D., Baxter, J. L., Wilde, S. A. & Williams, I. R. 1981. Crustal development in the Archaean Yilgarn Block, Western Australia. GEOL SOC AUST SPEC PUBL 7, 4356.Google Scholar
Gemutz, I. & Theron, A. 1975. The Archaean between Coolgardie and Norseman—stratigraphy and mineralisation. In Knight, C. L. (ed.) Economic geology of Australia and New Guinea I. Metals, 6674. AUST INST MIN METALL MONOGRAPH 5.Google Scholar
Gill, J. 1981. Orogenic andesites and plate tectonics. Berlin: Springer.CrossRefGoogle Scholar
Glikson, A. Y. 1972. Early Precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. GEOL SOC AM BULL 83, 3323–44.CrossRefGoogle Scholar
Green, D. H., Nicholls, I. A., Viljoen, M. & Viljoen, R. 1975. Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. GEOLOGY 3, 1114.2.0.CO;2>CrossRefGoogle Scholar
Griffiths, R. W. & Campbell, I. H. 1990. Stirring and structure in mantle plumes. EARTH PLANET SCI LETT 99, 6678.Google Scholar
Gromet, L. P. & Silver, L. T. 1987. REE variations across the Peninsular Ranges batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J PETROL 28, 75125.Google Scholar
Hallberg, J. A. 1972. Geochemistry of Archaean volcanic belts in the Eastern Goldfields region of Western Australia. J PETROL 13, 4556.CrossRefGoogle Scholar
Hallberg, J. A. 1985. Geology and mineral deposits of the Leonora-Laverton area, Northeastern Yilgarn Block, Western Australia. Perth: Hesperian Press.Google Scholar
Hallberg, J. A. 1986. Archaean basin development and crustal extension in the northeastern Yilgarn Block, Western Australia. PRECAMB RES 31, 133–56.Google Scholar
Hill, R. E. T., Gole, M. J. & Barnes, S. J. 1988. Physical volcanology of komatiites: A field guide to the komatiites between Kalgoorlie and Wiluna, Eastern Goldfields Province, Yilgarn Block, Western Australia. Perth: Geol Soc Australia, Western Australia Division.Google Scholar
Hill, R. I. 1988. San Jacinto intrusive complex, 1. Geology and mineral chemistry, and a model for intermittent recharge of tonalitic magma chambers. J GEOPHYS RES 93, 10325–48.Google Scholar
Hill, R. I. 1991. Starting plumes and continental breakup. EARTH PLANET SCI LETT 104, 398416.Google Scholar
Hill, R. I. & Campbell, I. H. 1989. A post-metamorphic age for gold mineralisation at Lady Bountiful, Yilgarn Block, Western Australia. AUST J EARTH SCI 36, 313–6.CrossRefGoogle Scholar
Hill, R. I. & Campbell, I. H. 1992. Age and origin of granites from the Norseman region of Western Australia. AUST J EARTH SCI (in press).Google Scholar
Hill, R. I. & Compston, W. 1986. Age of granite emplacement, southeastern Yilgarn Block, Western Australia. AUST NAT UNIV RES SCH EARTH SCI ANN REP, 7071.Google Scholar
Hill, R. I., Silver, L. T. & Taylor, H. P. Jr1986. Coupled Sr-O isotope variations as an indicator of source heterogeneity for the northern Peninsular Ranges batholith. CONTRIB MINERAL PETROL 92, 351–61.Google Scholar
Hill, R. I., Chappell, B. W. & Silver, L. T. 1988. San Jacinto intrusive complex, 2. geochemistry. J GEOPHYS RES 93, 10349–72.CrossRefGoogle Scholar
Hill, R. I., Campbell, I. H. & Compston, W. 1989. Age and origin of granitic rocks in the Kalgoorlie-Norseman region of Western Australia: Implications for the origin of Archaean crust. GEOCHIM COSMOCHIM ACTA 53, 1259–75.CrossRefGoogle Scholar
Hill, R. I., Campbell, I. H., Davies, G. F. & Griffiths, R. W. 1992 Mantle plumes and continental tectonics. SCIENCE (in press).CrossRefGoogle Scholar
Jarvis, G. T. & Campbell, I. H. 1983. Archean komatiites and geotherms: solution to an apparent contradiction. GEOPHYS RES LETT 10, 1133–6.Google Scholar
Johnson, R. W. & Chappell, B. W. 1979. Chemical analyses of rocks from the Late Cainozoic volcanoes of north-central New Britain and the Witu Islands, Papua New Guinea. REP BMR GEOL GEOPHYS 209.Google Scholar
Kinny, P. D., Wijbrans, J. R., Froude, D. O., Williams, I. S. & Compston, W. 1990. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. AUST J EARTH SCI 37, 5169.Google Scholar
Lambert, I. B. & Heier, K. S. 1968. Geochemical investigations of deep-seated rocks in the Australian shield. LITHOS 1, 3053.CrossRefGoogle Scholar
Maitre, R. W.Le 1989. A classification of igneous rocks and glossary of terms. Oxford: Blackwell.Google Scholar
Libby, W. G. 1978. Regional variation in granitic rocks. GEOL SURV WESTERN AUST REP 9, 53109.Google Scholar
McCulloch, M. T. 1987. Sm-Nd isotopic constraints on the evolution of Precambrian crust in the Australian continent. In Kröner, A. (ed.) Proterozoic lithospheric evolution. AMER GEOPHYS UNION GEODYNAMICS SER 17, 115–30.Google Scholar
McCulloch, M. T., Compston, W. & Froude, D. 1983. Sm-Nd and Rb-Sr dating of Archaean gneisses, eastern Yilgarn Block, Western Australia. GEOL SOC AUST 30, 149–53.CrossRefGoogle Scholar
McDonough, W. F. & Frey, F. A. 1990. Geochemistry and mineralogy of rare earth elements. In Lipin, B. R. & McKay, G. A. (eds.) Rare earth elements. MIN SOC AM REV MINERAL 21, 99145.Google Scholar
McKenzie, D. 1984. The generation and compaction of partially molten rock. J PETROL 25, 713–65.Google Scholar
McKenzie, D. & Bickle, M. J. 1988. The volume and composition of melt generated by extension of the lithosphere. J PETROL 29, 625–79.CrossRefGoogle Scholar
McNaughton, N. J. & Cassidy, K. F. 1990. A reassessment of the age of the Liberty Granodiorite: implications for a model of synchronous mesothermal gold mineralisation within the Norseman-Wiluna belt, Western Australia. AUST J EARTH SCI 37, 373–6.Google Scholar
Nieuwland, D. A. & Compston, W. 1981. Crustal evolution in the Yilgarn Block near Perth, Western Australia. GEOL SOC AUST SPEC PUBL 7, 159–71.Google Scholar
Oversby, V. M. 1975. Lead isotope systematics and ages of Archaean acid intrusives in the Kalgoorlie-Norseman area, Western Australia. GEOCHIM COSMOCHIM ACTA 39, 1107–25.CrossRefGoogle Scholar
Perring, C. S., Groves, D. I., Shellabear, J. N. & Hallberg, J. A. 1991. The “porphyry-gold” association in the Norseman-Wiluna belt of Western Australia: implications for models of Archaean gold metallogeny. PRECAMB RES 51, 85113.Google Scholar
Pidgeon, R. T., Wilde, S. A., Compston, W. & Shield, M. W. 1990. Archaean evolution of the Wongan Hills Greenstone Belt, Yilgarn Craton, Western Australia. AUST J EARTH SCI 37, 279–92.CrossRefGoogle Scholar
Schilling, J.-G. 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge. NATURE 242, 565–72.Google Scholar
Silver, L. T., Taylor, H. P. Jr & Chappell, B. W. 1979. Some petrological, geochemical and geochronological observations of the Peninsular Ranges batholith near the international border of the U.S.A. and Mexico, In Abbott, P. L. & Todd, V. R. (eds) GEOL SOC AM 1979 GUIDEB 83110.Google Scholar
Silver, L. T. & Chappell, B. W. 1988. The Peninsular Ranges batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. TRANS R SOC EDINBURGH EARTH SCI 79, 105–21.Google Scholar
Sofoulis, J. 1963. Boorabbin. WESTERN AUST GEOL SURV 1:250 000 SER EXPLANATORY NOTES.Google Scholar
Stephens, W. E. & Halliday, A. N. 1988. Geochemical contrasts between late Caledonian granitoid plutons of northern, central and southern Scotland. TRANS R SOC EDINBURGH EARTH SCI 79, 259–73.Google Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A. D. & Norry, M. J. (eds) Magmatism in the ocean basins. GEOL SOC LONDON SPEC PUBL 42, 313–45.Google Scholar
Swager, C. & Griffin, T. J. 1990. Geology of the Archaean Kalgoorlie Terrane. Perth: Geological Survey of Western Australia.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford: Black well.Google Scholar
Turek, A. 1966. Rubidium-strontium isotopic studies in the Kalgoorlie-Norseman area, Western Australia. Unpublished Ph.D. Thesis, The Australian National University, Canberra.Google Scholar
Whalen, J. B. 1985. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau Intrusive Complex, New Britain P.N.G. J PETROL 26, 603–32.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.Google Scholar
White, A. J. R. & Chappell, B. W. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 79, 169–81.Google Scholar
Whitford, D. J., Nicholls, I. A. & Taylor, S. R. 1979. Spatial variations in the geochemistry of Quaternary lavas across the Sunda arc in Java and Bali. CONTRIB MINERAL PETROL 70, 341–56.Google Scholar
Wilde, S. A. & Pidgeon, R. T. 1986. Geology and geochronology of the Saddleback Greenstone Belt in the Archaean Yilgarn Block, southwestern Australia. AUST J EARTH SCI 33, 491501.Google Scholar
Williams, I. S. & Collins, W. J. 1990. Granite-greenstone terranes in the Pilbara Block, Australia, as coeval volcano-plutonic complexes; evidence from U-Pb zircon dating of the Mount Edgar Batholith. EARTH PLANET SCI LETT 97, 4153.Google Scholar
Witt, W. K. & Swager, C. P. 1989. Structural setting and geochemistry of the Archaean I-type granitoids in the Bardoc-Coolgardie area of the Eastern Goldfields Province, Western Australia. PRECAMBRIAN RES 44, 323–51.CrossRefGoogle Scholar
Wong, L., Davis, D. W., Krogh, T. E. & Robert, F. 1991. U-Pb zircon and rutile chronology of Archean greenstone formation and gold mineralization in the Val d'Or region, Quebec. EARTH PLANET SCI LETT 104, 325–36.CrossRefGoogle Scholar
Wyborn, L. A. I., Page, R. W. & Parker, A. J. 1987. Geochemical and geochronological signatures in Australian Proterozoic igneous rocks. In Pharaoh, T. C., Beckinsale, R. D. & Rickard, D. (eds). Geochemistry and mineralization of proterozoic volcanic suites. 377-394. GEOL SOC LONDON SPEC PUBL 33, 377–94.Google Scholar
Wyborn, L. A. I., Wyborn, D., Warren, R. G. & Drummond, B. J. 1992. Proterozoic granite types in Australia: implications for lower crustal structure and evolution. TRANS R SOC EDINBURGH EARTH SCI 83, 201–09.Google Scholar