Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T16:37:13.331Z Has data issue: false hasContentIssue false

Isopodichnus, related arthropod trace fossils and notostracans from Triassic fluvial sediments

Published online by Cambridge University Press:  03 November 2011

J. E. Pollard
Affiliation:
Department of Geology, The University, Manchester M13 9PL, England.

Abstract

The commonest arthropod trace fossils from Triassic aquatic red beds are the bilobate traces Isopodichnus and trackways known as ‘Merostomichnites’ triassicus. These trace fossils were probably produced by notostracan branchiopods, similar to Triops. Four arthropod ichnocoenoses from Lower Triassic fluvial sandstones have been analysed in terms of size frequency distribution, behavioural variation and relationship to sedimentary structures and depositional environment. One Isopodichnus ichnofauna associated with flute moulds (Dumfries-shire, Scotland) shows a normal age-structured population of arthropods responding with strong rheotaxis within shallow fluvial channels. The second Isopodichnus assemblage associated with ripple marks (Worcestershire, England) also shows strong rheotaxis but is bimodal in size and morphotype, possibly suggesting change in arthropod behaviour with age. Two ichnocoenoses of trackways with less pronounced rheotaxis associated with ripples (Cheshire, England) and flute moulds (Württemberg, Germany) were produced by larger arthropods than the resting traces. These arthropods probably possessed 6 to 9 pairs of walking limbs.

The conclusions derived from these notostracan trace fossils are compared with data on palaeoecology, population size-frequency, morphology and behaviour of Triops cancriformis derived from the analysis of three Triassic body fossil faunas and literature on living populations. Taxonomic consideration favours retention of the name Isopodichnus but the trackways should be included in Acripes Matthew. Brief review of late Palaeozoic Isopodichnus assemblages which appear to predate known notostracan fossils is inconclusive as regards both identifying producers or infallible means of separation from Cruziana assemblages.

Type
Life and environment of fossil forms
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P. 1976. Trilobite and star-like trace fossils from the White-Inyo Mountains, California. J PALEONTOL 50, 226–39.Google Scholar
Anderson, A. M. 1975. The “trilobite” trackways in the Table Mountain Group (Ordovician) of South Africa. PALAEONTOL AFR 18, 3545.Google Scholar
Anderson, A. M. 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca Series of South Africa. J. PALEONTOL 55, 84108.Google Scholar
Audley-Clarles, M. G. 1970. Stratigraphical correlation of the Triassic rocks of the British isles. Q J GEOL SOC LONDON 126, 1947.CrossRefGoogle Scholar
Backhaus, E. 1967. Zur Genese des Buntsandstein im Spessart. JAHRESBER MITT OBER RHEIN GEOL VER 49, 157–71.Google Scholar
Backhaus, E. 1975. Der Buntsandstein im Odenwald. AUFSCHLUSS 27, 299320.Google Scholar
Beasley, H. C. 1908. Report on tracks of invertebrates, cast of plants and markings of uncertain origin. Part 1. REP BR ASSOC ADV SCI DUBLIN 1908, 269–74.Google Scholar
Bergstrom, J. 1973. Organisation, life and systematics of trilobites. FOSSILS STRATA 2, 69.Google Scholar
Birkenmajer, K. & Bruton, D. 1971. Some trilobite resting and crawling traces. LETHAIA 4, 303–19.CrossRefGoogle Scholar
Briggs, D. E. G. & Rolfe, W. D. I. 1983. A giant arthropod trackway from the Lower Mississippian of Pennsylvania. J PALEONTOL 57, 377–90.Google Scholar
Briggs, D. E. G., Rolfe, W. D. I. & Brannan, J. 1979. A giant myriapod trail from the Namurian of Arran, Scotland. PALAEONTOLOGY 22, 273–91.Google Scholar
Briggs, D. E. G., Plint, A. G. & Pickerill, R. K. 1984. Arthropleura trails from the Westphalian of eastern Canada. PALAEONTOLOGY 27(4), 843–55.Google Scholar
Bromley, R. G. & Asgaard, U. 1972. Notes on Greenland trace fossils. I. Freshwater Cruziana from Upper Triassic of Jameson Land, E. Greenland. GRONLANDS GEOL UNDERS RAPP 49, 713.Google Scholar
Bromley, R. G. & Asgaard, V. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 28, 3980.CrossRefGoogle Scholar
Burmeister, E. G. 1982. A contribution to the biology and population structure of Lepidurus apus (Crustacea, Notostraca) SPIXIANA (MUENCH) 5(2), 193209.Google Scholar
Cannon, H. G. 1933. On the feeding mechanism of the Branchiopoda. PHILOS TRANS R SOC LONDON B 222, 267353.Google Scholar
Carlisle, D. B. 1968. Triops (Entomostraca) eggs killed only by boiling. SCIENCE 161, 279–80.CrossRefGoogle ScholarPubMed
Chamberlain, C. K. 1975. Recent lebensspuren in non-marine aquatic environments. In Frey, R. W. (ed.) The study of trace fossils, 431–58. New York: Springer.CrossRefGoogle Scholar
Chisholm, J. I. 1983. Xiphosurid traces, Kouphkhnium aff. variabilis (Linck), from the Namurian Upper Haslingden Flags of Whitworth, Lancashire. REP INST GEOL SCI No. 83/10, 3744.Google Scholar
Crimes, T. P. 1970. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from Lower Palaeozoic strata. In Crimes, T. P. & Harper, J. C.Trace Fossils. GEOL J SPECIAL ISSUE 3. Liverpool: Seel House.Google Scholar
Dawson, J. W. 1868. Acadian Geology, 2nd edn. London: Macmillan.Google Scholar
Fox, H. M. 1949. On Apus: its rediscovery in Britain nomenclature and habits. PROC ZOOL SOC LONDON 119, 693702.CrossRefGoogle Scholar
Fryer, G. 1985. Structure and habits of living branchiopod crustaceans and their bearing on the interpretation of fossil forms. TRANS R SOC EDINBURGH EARTH SCI 76, 103–13.Google Scholar
Gall, J. C. 1971. Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. MEM SERV CARTE GEOL ALSACE LORRIANE 34.Google Scholar
Gall, J. C. & Grauvogel-Stamm, L. 1984. Genèse des gisements fossilifères du Grès à Voltzia (Anisien) du Nord des Vosges (France). GEOBIOS MEM SPEC No 8, 293–97.CrossRefGoogle Scholar
Glaessner, M. F. 1957. Palaeozoic arthropod trails from Australia. PALAONTOL Z 31, 103–9.CrossRefGoogle Scholar
Guthorl, P. 1934. Die Arthropoden aus dem Carbon und Perm des Saar-Nahe-Pfalz Gebietes. ABH PREUSS GEOL LANDESANST 164.Google Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units. Upper Pennsylvian megacyclothems, northeast Kansas. UNIV KANSAS PALEONTOL CONTRIB 63.Google Scholar
Hanken, N. M. & Størmer, L. 1975. The trail of a large Silurian eurypterid. FOSSILS STRATA 4, 255–70.CrossRefGoogle Scholar
Hantzschel, W. 1975. Trace fossils and problematica, 2nd edn. In Teichert, C. (ed.) Treatise of Invertebrate Paleontology, Part W. Miscellanea. Supplement 1. Boulder, Colorado and Lawrence, Kansas: Geol. Soc. Am.Google Scholar
Harkness, R. 1854. On crustacean impressions in the Trias of Dumfriesshire. REP BR ASSOC ADV SCI LIVERPOOL, 86.Google Scholar
Haubold, H. 1982. Die Lebewelt des Rotliegenden. Wittemberg, Lutherstadt: Ziemsen.Google Scholar
Linck, O. 1942. Die Spur Isopodichnus. SENKENBERGIANA 25, 233–55.Google Scholar
Linck, O. 1943. Die Buntsandstein—Kleinfahrten von Nagold. (Limulidichnulus nagoldensis n.g. n.sp. Merostomichmtes triassicus n.sp.) NEUES JAHRB MINERAL GEOL PALAONTOL MONATSH ABT B 1943, 927.Google Scholar
Linck, O. 1949. Lebens–spuren aus dem Schilfsandstein (Mittl. Keuper, km 2) NW-Württembergs und ihre Bedeutung fur die Bildungsgeschichten der Stufe. JAHRESH VER VATERL NATURKD WÜRTTEMBERG 97–101, 1100.Google Scholar
Longhirst, A. R. 1955. A review of the Notostraca. BULL BR MUS (NAT HIST) ZOOL 3, 157.CrossRefGoogle Scholar
Manton, S. M. 1977. The Arthropoda—habits, functional morphology and evolution. Oxford: University Press.Google Scholar
Matthew, G. F. 1910. Remarkable forms of the Little River Group. R SOC CAN PROC TRANS 3(3), 115–25.Google Scholar
Miller, M. F. 1982. Limulicubichnus: a new ichnogenus for limulid resting places. J PALEONTOL 56, 429–33.Google Scholar
Morton, H. G. 1891. Geology of the country around Liverpool, 2nd edn. London: George Philip.Google Scholar
Nitecki, M. H. 1979. (ed.) Mazon Creek Fossils. Chicago: Academic Press.Google Scholar
Osgood, R. G. 1970. Trace fossils from the Cincinnati area. PALEONTOL AM 6, 281444.Google Scholar
Pollard, J. E. & Walker, E. F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). GEOBIOS 17, 567–76.CrossRefGoogle Scholar
Pollard, J. E., Steel, R. J. & Undersrud, E. 1982. Facies sequences and trace fossils in lacustrine fan-delta deposits, Hornelen Basin (M. Devonian). Western Norway. SEDIMENT GEOL 32, 6387.CrossRefGoogle Scholar
Reineck, H. E. & Singh, I. B. 1975. Depositional Sedimentary Environments. Berlin: Springer.Google Scholar
Riek, G. & Lebküchner, R. 1928. Über Fährtenfunde im mittleren Buntsandstein des Nordschwarzwaldes. ZENTRAL BL MINERAL GEOL PALAONTOL 1928 B, 633–6.Google Scholar
Roberts, G. E. 1863. On some crustacean tracks from the Old Red Sandstone near Ludlow. Q J GEOL SOC LONDON 19, 233–5.CrossRefGoogle Scholar
Rolfe, W. D. I. 1972. Sedimentary structures and trace fossils from Corsehill Quarry, Annan. PROC GEOL SOC GLASGOW 111, 18.Google Scholar
Rolfe, W. D. I. 1980. Early invertebrate terrestrial faunas. In Panchen, A. L. (ed.) The terrestrial environment and the origin of land vertebrates, 117–57. London and New York: Academic Press.Google Scholar
Rolfe, W. D. I., Schramm, F. R., Pacaud, G., Sotty, D. & Secretan, S. 1982. A remarkable Stephanian biota from Montceau-les-Mines, France. J PALEONTOL 56, 426–8.Google Scholar
Ruedeman, R. 1922. On the occurrence of an Apus in the Permian of Oklahoma. J GEOL 30, 311–8.CrossRefGoogle Scholar
Savage, N. M. 1971. A varvite ichnocoenosis from the Dwyka Series of Natal. LETHAIA 4, 217–33.CrossRefGoogle Scholar
Schimper, N. P. 1853. Paleontologica alsatica ou Fragments paléontologiques des différents terrains stratifiés qui se recoutrent en Alsace. MEM SOC MUS HIST NAT STRASBOURG 4(2/3), 110.Google Scholar
Schindewolf, O. 1928. Studien aus dem Marburger Buntsandstein. IV. Isopodichnus problematicus (Schidwf) im Unteren und Mittleren Buntsandstein. SENKENBERGIANA 10, 2737.Google Scholar
Scott, S. R. & Grigarick, A. A. 1978. Observations on the biology and rearing of the tadpole shrimp Triops longicaudatus (Leconte) (Notostraca; Triopsidae) WASMANN J BIOL 36, 116–26.Google Scholar
Seilacher, A. 1953. Studien zur Palichnologie II. Die fossilen Ruhespuren (Cuhichnia). NEUES JAHRB GEOL PALAONTOL ABH 98, 87124.Google Scholar
Seilacher, A. 1954. Die geologische Bedeutung fossiler Lebensspuren. DTSCH GEOL GES Z 105, 213–27.Google Scholar
Seilacher, A. 1960. Lebensspuren als Leitfossilien. GEOL RUNDSCH 49, 4150.CrossRefGoogle Scholar
Seilacher, A. 1963. Lebensspuren und Salinitätsfazies. FORTSCHR GEOL RHEINL WESTFALEN 10, 8194.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of ‘non-fossiliferous’ Palaeozoic sandstones. In Crimes, T. P. & Harper, J. C. (eds) Trace Fossils, 447–76. GEOL J SPEC ISSUE 3. Liverpool: Seel House.Google Scholar
Seilacher, A. 1978. Use of trace fossil assemblages for recognising depositional environments. In Basan, P. B. (ed.) Trace fossil concepts, 167–81. SEPM SHORT COURSE 5.Google Scholar
Selden, P. A. 1984. Autecology of Silurian eurypterids. In Bassett, M. G. (ed.) Autecology of Silurian organisms. SPEC PAP PALAEONTOL 32, 3954.Google Scholar
Sörgel, W. 1928. Ein Apoditentumpel aus dem Buntsandstein. PALAONTOL Z 10, 1141.Google Scholar
Tasch, P. 1969. Branchiopoda. In Teichert, C. (ed.) Treatise of Invertebrate Paleontology, Part R. Arthropoda 4, R128191. Boulder, Colorado and Lawrence, Kansas: Geol. Soc. Am.Google Scholar
Thompson, D. B. 1970a. Stratigraphy of so-called Keuper sandstone Formation Scythian?- Anisian) in the Permo-Triassic Cheshire Basin. Q J GEOL SOC LONDON 126, 151–82.CrossRefGoogle Scholar
Thompson, D. B. 1970b. Sedimentation of the Triassic (Scythian) red pebbly sandstones in the Cheshire Basin and its margins. GEOL J 7, 183261.CrossRefGoogle Scholar
Trewin, N. H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. LETHAIA 9, 2937.CrossRefGoogle Scholar
Trusheim, F. 1931. Actuo-paläontologische Beobachtungen an Triops cancriformis SCHAEFFER (Crust. Phyll.). SENKENBERGIANA 13, 234–43.Google Scholar
Trusheim, F. 1938. Triopsiden (Crust. Phyll.) aus dem Keuper Frankens. PALAONTOL Z 19, 198216.CrossRefGoogle Scholar
Walker, E. F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. TRANS R SOC EDINBURGH EARTH SCI 76, 287–97.Google Scholar
Walter, H. 1980. Zur Kenntnis der Ichnia limnisch-terrestrischer Arthropoden des Rotliegenden. FREIBERGER FORSCHUNGSH C357, 61–8.Google Scholar
Walter, H. 1983. Zur Taxonomie, Ökologie und Biostratigraphie der Ichnia limnischer-terrestrischer Arthropoden des mitteleuropäischen Jungpaläozoikums. FREIBERGER FORSCHUNGSH C382, 146–93.Google Scholar
Wills, L. J. 1970a. The Bunter Formation at the Bellington Pumping Station of the East Worcestershire Waterworks Company. MERCIAN GEOL 3, 387–97.Google Scholar
Wills, L. J. 1970b. Triassic succession in the central Midlands in its regional setting. Q J GEOL SOC LONDON 126, 225–83.CrossRefGoogle Scholar
Wills, L. J. & Sarjeant, W. A. S. 1970. Fossil vertebrate and invertebrate tracks from boreholes through the Bunter Series (Triassic) of Worcestershire. MERCIAN GEOL 3, 399414.Google Scholar