Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T03:32:24.078Z Has data issue: false hasContentIssue false

Interpretation of Pb isotope compositions of galenas from the Midland Valley of Scotland and adjacent regions

Published online by Cambridge University Press:  03 November 2011

John Parnell
Affiliation:
Department of Geology, Queen's University, Belfast BT7 INN, Northern Ireland.
Ian Swainbank
Affiliation:
Isotope Geology Unit, British Geological Survey, 64–78 Grays Inn Road, London WC1 8NG, England.

Abstract

The lead isotope compositions of 61 galenas from central and southern Scotland vary markedly between different regions. Most galenas from the southern Grampian Highlands yield isotope ratios (206Pb/204Pb 17·77 ± 0·25, 207Pb/204Pb 15·47 ± 0·05, 208Pb/204Pb 37·63 ± 0·26) less radiogenic than those from Midland Valley galenas (18·22 ± 0·12, 15·55 ± 0·05, 38·13 ± 0·14) whilst galena lead from the Southern Uplands (18·28 ± 0·12, 15·56 ± 0·03, 38·21 ± 0·18) is more radiogenic than that from the southern Midland Valley (18·12 ± 0·06, 15·52 ± 0·02, 38·06 ±0·10). The change in isotopie composition across the Highland Boundary fault reflects the presence or absence of Dalradian rocks which included a magmatic component of lead. Galenas from the Dalradian sequence in Islay, where igneous rocks are lacking, have a composition (18·14±0·04, 15·51±0·01, 37·90±0·02) more like Midland Valley galenas. In the Southern Uplands, galenas yield lead isotope ratios similar to those of feldspars from Caledonian granite (18·30 ± 0·14, 15·57 ± 0·04, 37·96 ± 0·15) analysed by Blaxland et al. (1979). The similar ratios reflect the incorporation of Lower Palaeozoic sedimentary rocks into the granite magma, rather than a granitic source for the mineralisation. The granites were then thermal-structural foci for later mineralising fluids which leached metals from the surrounding rocks. Within the Midland Valley, galenas hosted in Lower Devonian-Lower Carboniferous lavas are notably more radiogenic (18·31 ±0·12, 15·58 ± 0·06, 38·20 ± 0·16) than sediment-hosted galenas (18·14 ± 0·07, 15·52 ± 0·02, 38·08 ± 0·10). The Devonian lavas at least may have inherited lead from subducted (? Lower Palaeozoic) rock incorporated in the primary magma.

Type
Regional framework
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, P. I., Awramik, S. M., Osborne, R. H. & Tomellini, S. 1982. Plio-Pleistocene lacustrine stromatolites from Lake Turkana, Kenya: Morphology, stratigraphy and stable isotopes. SEDIMENT GEOL 32, 126.CrossRefGoogle Scholar
Aftalion, M., van Breemen, O., Bowes, D. R. 1984. Age constraints on basement of the Midland Valley of Scotland. TRANS R SOC EDINBURGH EARTH SCI 75, 5364.CrossRefGoogle Scholar
Anderton, R. 1982. Dalradian deposition and the late Precambrian-Cambrian history of the N. Atlantic region: a review of the early evolution of the Iapetus Ocean. J GEOL SOC LONDON 139, 421–31.CrossRefGoogle Scholar
Anderton, R., Bridges, P. M., Leeder, M. R. & Sellwood, B. W. 1979. A Dynamic Stratigraphy of the British Isles. London: Allen & Unwin.Google Scholar
Bamford, D., Nunn, K., Prodehl, C. & Jacob, B. 1978. LISPB IV. Crustal structure of northern Britain. GEOPHYS J R ASTRON SOC 54, 4360.CrossRefGoogle Scholar
Bischoff, J. L., Radtke, A. S. & Rosenbauer, R. J. 1981. Hydrothermal alteration of greywacke by brine and seawater: roles of alteration and chloride complexing on metal solubilization at 200°C and 350°C. ECON GEOL 76, 659–76.CrossRefGoogle Scholar
Blaxland, A. B., Aftalion, M. & van Breemen, O. 1979. Pb isotopic composition of feldspars from Scottish Caledonian granites, and the nature of the underlying crust. SCOTT J GEOL 15, 139–51.CrossRefGoogle Scholar
Bluck, B. J. 1983. Role of the Midland Valley of Scotland in the Caledonian orogeny. TRANS R SOC EDINBURGH EARTH SCI 74, 119–36.CrossRefGoogle Scholar
Boast, A. M., Swainbank, I. G., Coleman, M. L. & Halls, C. 1981. Lead isotope variation in the Tynagh, Silvermines and Navan base-metal deposits, Ireland. TRANS INST MIN METALL 90, B1159.Google Scholar
Bosworth, T. O. 1913. The heavy mineral grains in the sands of the Scottish Carboniferous. REP BR ASSOC ADV SCI (1912), 474–5.Google Scholar
Chapman, H. J. & Moorbath, S. 1977. Lead isotope measurements from the oldest recognized Lewisian gneisses of north-west Scotland. NATURE 268, 41–2.CrossRefGoogle Scholar
Clayburn, J. A. P., Harmon, R. S., Pankhurst, R. J. & Brown, J. F. 1983. Sr, O and Pb isotope evidence for origin and evolution of Etive Igneous Complex, Scotland. NATURE 303, 492–7.CrossRefGoogle Scholar
Curry, G. B., Ingham, J. K., Bluck, B. J. & Williams, A. 1982. The significance of a reliable Ordovician age for some Highland Border rocks in Central Scotland. J GEOL SOC LONDON 139, 451–4.CrossRefGoogle Scholar
Dickin, A. P. 1983. Hydrothermal fluid pathways at the contact of the Beinn an Dubhaich epigranite, Isle of Skye. SCOTT J GEOL 19, 235–42.CrossRefGoogle Scholar
Dickin, A. P., Moorbath, S. & Welke, H. J. 1981. Isotope, trace element and major element geochemistry of Tertiary igneous rocks, Isle of Arran, Scotland. TRANS R SOC EDINBURGH EARTH SCI 72, 159–70.CrossRefGoogle Scholar
Doe, B. R. & Zartman, R. E. 1979. Plumbotectonics I, The Phanerozoic. In Barnes, H. L., (ed.) Geochemistry of Hydrothermal Ore Deposits 2nd edn, 2270. New York: Wiley-Interscience.Google Scholar
Dunham, K. C. 1952. Fluorspar 4th edn. SPEC REP MINER RESOUR G B 4.Google Scholar
Dunham, K. C., Beer, K. E., Ellis, R. A., Gallagher, M. J., Nutt, M. J. C. & Webb, B. C. 1978. United Kingdom. In Bowie, S. H. U., Kvalheim, A. & Haslam, H. W. (eds) Mineral Deposits of Europe Volume 1: Northwest Europe. London: Institution of Mining and Metallurgy.Google Scholar
Dunham, K. C., Dunham, A. C., Hodge, B. L. & Johnson, G. A. L. 1965. Granite beneath Viséan sediments with mineralization at Rookhope, northern Pennines. Q J GEOL SOC LONDON 121, 383417.CrossRefGoogle Scholar
Evans, A. M. & El-Nikhely, A. 1982. Palaeomagnetic age for mineralization at Auchenstilloch, Lanarkshire, Scotland. TRANS INST MIN METALL 91B, 43–4.Google Scholar
Francis, E. H. 1978. The Midland Valley as a rift, seen in connection with the late-Palaeozoic rift system. In Ramberg, I. B. & Newmann, E. R. (eds) Tectonics and Geophysics of Continental Drift, 133–47. Dordrecht: Reidel.CrossRefGoogle Scholar
Francis, E. H., Forsyth, I. H., Read, W. A. & Armstrong, M. 1970. The geology of the Stirling District. MEM GEOL SURV G B.Google Scholar
French, W. J., Hassan, M. D. & Westcott, J. 1979. The petrogenesis of Old Red Sandstone volcanic rocks of the western Ochils, Stirlingshire. In Harris, A. L., Holland, C. M. & Leake, B. E. (eds) The Caledonides of the British Isles—reviewed, 635–42. SPEC PUBL GEOL SOC LONDON 8.Google Scholar
Gallagher, M. J. 1968. Discussion on ‘Barytes mineralization at Gasswater mine, Ayrshire, Scotland (B. Scott)’. TRANS INST MIN METALL 77, 844–5.Google Scholar
Gallagher, M. J., Davies, A., Parker, M. E., Smith, R. T., Fortey, N. J. & Easterbrook, G. D. 1977. Lead, zinc and copper mineralization in basal Carboniferous sediments at Westwater, south Scotland. MIN RECONN PROG REP INST GEOL SCI 17.Google Scholar
Gallagher, M. J., Hall, I. M. S. & Stephenson, D. 1982. Controls and genesis of baryte veins in central Scotland. BULL BUR RECH GEOL MIN SECT II 2, 143–8.Google Scholar
Greensmith, J. T. 1965. Calciferous Sandstone Series sedimentation at the eastern end of the Midland Valley of Scotland. J SEDIMENT PETROL 35, 223–42.Google Scholar
Greig, J. A., Baadsgaard, H., Cumming, G. L., Folinsbee, R. E., Krouse, H. R., Ohmoto, H., Sasaki, A. & Smejkal, V. 1971. Lead and sulphur isotopes of the Irish base metal mines in Carboniferous carbonate host rocks. SOC MIN GEOL JAPAN SPEC ISSUE 2, 8492.Google Scholar
Hall, I. H. S., Gallagher, M. J., Skilton, B. R. H., & Johnson, C. E. 1982. Investigation of polymetallic mineralization in Lower Devonian volcanics near Alva, central Scotland. MIN RECONN PROG REP INST GEOL SCI 53.Google Scholar
Hall, J., Brewer, J. A., Matthews, D. H. & Warner, M. R. 1984. Crustal structure across the Caledonides from the ‘WINCH’ seismic reflection profile: influences on the evolution of the Midland Valley of Scotland. TRANS R SOC EDINBURGH EARTH SCI 75, 97109.CrossRefGoogle Scholar
Hall, J., Powell, D. W., Warner, M. R., El-Isa, Z. H. M., Adesanya, O. & Bluck, B. J. 1983. Seismological evidence for shallow crystalline basement in the Southern Uplands of Scotland. NATURE 305, 418–20.CrossRefGoogle Scholar
Halliday, A. N. 1981. On the sources of uranium in some Scottish Caledonian granites. MINERAL MAG 44, 437–42.CrossRefGoogle Scholar
Halliday, A. N., Aftalion, M., van Breemen, O. & Jocelyn, J. 1979. Petrogenetic significance of Rb–Sr and U–Pb isotopic systems in the 400 Ma old British Isles granitoids and their host rocks. In Harris, A. L., Holland, C. H. & Leake, B. E. (eds) The Caledonides of the British Isles—reviewed, 653–61. SPEC PUBL GEOL SOC LONDON 8.Google Scholar
Halliday, A. N., Stephens, W. E. & Harmon, R. S. 1980. Rb–Sr and O isotopic relationships in 3 zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magma. J GEOL SOC LONDON 137, 329–48.CrossRefGoogle Scholar
Halsall, T. J. 1980. Occurrence of copper mineralization on Isle of Arran, Scotland. TRANS INST MIN METALL 89, B1567.Google Scholar
Harmon, R. S. & Halliday, A. N. 1980. Oxygen and strontium isotope relationships in the British late Caledonian granites. NATURE 283, 21–5.CrossRefGoogle Scholar
Heddle, M. F. 1901. The Mineralogy of Scotland (2 vols). Edinburgh: David Douglas.Google Scholar
Houston, R. S. 1912. Notes on the mineralogy of Renfrewshire. TRANS PAISLEY NAT SOC 1, 187.Google Scholar
Hunt, R. 1855. Mineral Statistics for 1853 and 1854. MEM GEOL SURV G B.Google Scholar
Hunter, R. H., Upton, B. G. J. & Aspen, P. 1984. Meta-igneous granulite and ultramafic xenoliths from basalts of the Midland Valley of Scotland: petrology and mineralogy of the lower crust and upper mantle. TRANS R SOC EDINBURGH EARTH SCI 75, 7584.CrossRefGoogle Scholar
Hutchison, C. S. 1983. Economic Deposits and their Tectonic Setting. London: Macmillan.CrossRefGoogle Scholar
Ineson, P. R. & Mitchell, J. G. 1974. K–Ar isotopic age determinations from some Scottish mineral localities. TRANS INST MIN METALL 83, 813–8.Google Scholar
Jassim, R. Z. 1981. Lithogeochemical and mineralogical studies of the silver-copper-barite deposits of the Ochil Hills, Midland Valley of Scotland. TRANS INST MIN METALL 90, B91.Google Scholar
Johnstone, G. S. & Gallagher, M. 1980. Caledonian stratabound sulphides in the United Kingdom. GEOL SURV IREL SPEC PAP 5, 63–6.Google Scholar
Kennan, P. S., Phillips, W. E. A. & Strogen, P. 1979. Pre-Caledonian basement to the paratectonic Caledonides in Ireland. In Harris, A. L., Holland, C. H. & Leake, B. E. (eds) The Caledonides of the British Isles—reviewed, 157–61. SPEC PUBL GEOL SOC LONDON 8.Google Scholar
Lagios, E. & Hipkin, R. G. 1979. The Tweeddale Granite—a newly discovered batholith in the Southern Uplands. NATURE 280, 672–5.CrossRefGoogle Scholar
Leake, R. C. & Haslam, H. W. 1978. A geochemical survey of the Cheviot area in Northumberland and Roxburghshire using panned mineral concentrates. REP INST GEOL SCI 78/4.Google Scholar
Leeder, M. R. 1982. Upper Palaeozoic basins of the British Isles-Caledonide inheritance versus Hercynian plate margin processes. J GEOL SOC LONDON 139, 479–91.CrossRefGoogle Scholar
Leggett, J. K., McKerrow, W. S. & Soper, N. J. 1983. A model for the crustal evolution of Southern Scotland. TECTONICS 2, 187210.CrossRefGoogle Scholar
MacDonald, J. G. 1973. Carbon dioxide metasomatism in the Campsie Lavas. MINERAL MAG 39, 119–21.CrossRefGoogle Scholar
McDonald, R. 1980. Trace element evidence for mantle heterogeneity beneath the Scottish Midland Valley in the Carboniferous and Permian. PHILOS TRANS R SOC LONDON 297A, 245–57.Google Scholar
McDonald, R., Gottfried, D., Farrington, M. J., Brown, F. W. & Skinner, N. G. 1981. Geochemistry of a continental tholeiite suite: late Palaeozoic quartz dolerite dykes of Scotland. TRANS R SOC EDINBURGH EARTH SCI 72, 5774.CrossRefGoogle Scholar
McGregor, A. G. 1944. Barytes in central Scotland. WARTIME PAM GEOL SURV GB 38.Google Scholar
Max, M. D. 1976. The pre-Palaeozoic basement in south-eastern Scotland and the Southern Uplands Fault. NATURE 264, 485–6.CrossRefGoogle Scholar
Mitchell, A. H. E. & Garson, M. S. 1981. Mineral Deposits and Global Tectonic Settings. London: Academic Press.Google Scholar
Mitchell, R. H. & Krouse, H. R. 1971. Isotopie composition of sulphur and lead in galena from the Greenhow-Skyreholme area, Yorkshire, England. ECON GEOL 66, 243–51.CrossRefGoogle Scholar
Moorbath, S. 1962. Lead isotope abundance studies on mineral occurrences in the British Isles and their geological significance. PHILOS TRANS R SOC LONDON 254A, 295360.Google Scholar
O'Nions, R. K., Hamilton, P. J. & Hooker, P. J. 1983. A Nd isotope investigation of sediments related to crustal development in the British Isles. EARTH PLANET SCI LETT 63, 229–40.CrossRefGoogle Scholar
Pankhurst, R. J. & Pidgeon, R. T. 1976. Inherited isotope systems and the source region pre-history of early Caledonian granites in the Dalradian Series of Scotland. EARTH PLANET SCI LETT 31, 5568.CrossRefGoogle Scholar
Parnell, J. 1983a. Stromatolite-hosted mineralization in the Oil Shale Group, Scotland. TRANS INST MIN METALL 92, 98–9.Google Scholar
Parnell, J. 1983b. Ancient duricrusts and related rocks in perspective: a contribution from the Old Red Sandstone. In Wilson, R. C. L. (ed.) Residual Deposits: Surface Related Weathering Processes and Materials, 197209. SPEC PUBL GEOL SOC LONDON 11.Google Scholar
Phillips, W. E. A., Stillman, C. J. & Murphy, T. 1976. A Caledonian plate tectonic model. J GEOL SOC LONDON 132, 579609.CrossRefGoogle Scholar
Pidgeon, R. T. & Aftalion, M. 1978. Cogenetic and inherited zircon U–Pb systems in granites: Palaeozoic granites of Scotland and England. In Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in northwestern Britain and adjacent regions, 183220. GEOL J SPEC ISSUE 10.Google Scholar
Plant, J. A., Simpson, P. R., Green, M. P., Watson, J. V. & Fowler, M. B. 1983. Metalliferous and mineralized Caledonian granites in relation to regional metamorphism and fracture systems in northern Scotland. TRANS INST MIN METALL 92, B3342.Google Scholar
Radtke, A. S. & Russell, M. J. 1978. Relationships between minor elements in Palaeozoic sedimentary rocks and the distribution and chemical compositions of base metal deposits in Ireland. GEOL SOC AM ABSTR PROGRAM 10, 475.Google Scholar
Russell, M. J. 1968. Structural controls of base metal mineralization in Ireland in relation to continental drift. TRANS INST MIN METALL 77, B11728.Google Scholar
Russell, M. J. 1973. Base metal mineralization in Ireland and Scotland and the formation of Rockall Trough. In Tarling, D. H. & Runcorn, S. K. (eds) Implications of Continental Drift to the Earth Sciences, Vol. 1, 581–97. London: Academic Press.Google Scholar
Russell, M. J. 1978. Mineralization in a fractured craton. In Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in northwestern Britain and adjacent regions, 297308. GEOL J SPEC ISSUE 10.Google Scholar
Russell, M. J., Willan, R. C. R., Anderton, R., Hall, A. J., Nicholson, K. & Smythe, D. K. 1981. Genetic model and tectonic setting for Dalradian stratiform mineral deposits, Grampian Highlands, Scotland (Abs). TRANS INST MIN METALL 90, B58.Google Scholar
Scott, B. 1967. Barytes mineralization at Gasswater mine, Ayrshire. TRANS INST MIN METALL 76, B4051.Google Scholar
Scott, B. 1976. Zinc and lead mineralization along the margins of the Caledonian orogen. TRANS INST MIN METALL 85, B20004.Google Scholar
Smith, R. T., Gallagher, M. J. & Fortey, N. J. 1978. Controls of lead-zinc mineralization in basal Carboniferous rocks near Langholm, Scotland. TRANS INST MIN METALL 87, B14043.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. EARTH PLANET SCI LETT 26, 207–21.CrossRefGoogle Scholar
Stanley, C. J. & Vaughan, D. J. 1982. Copper, lead, zinc and cobalt mineralization in the English Lake District: classification, conditions of formation and genesis. J GEOL SOC LONDON 139, 569–79.CrossRefGoogle Scholar
Sun, S. S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. PHILOS TRANS R SOC LONDON 297A, 409–45.Google Scholar
Swainbank, I. G., Fortey, N. J. & Boast, A. M. 1981. Lead-isotope ratios of galena from strata-bound mineralization in the Scottish Dalradian (Abs). TRANS INST MIN METALL 90, B57.Google Scholar
Thirlwall, M. F. 1981. Implications for Caledonian plate tectonic models of chemical data from volcanic rocks of the British Old Red Sandstone. J GEOL SOC LONDON 138, 123–38.CrossRefGoogle Scholar
Thirlwall, M. F. 1982. Systematic variation in chemistry and Nd-Sr isotopes across a Caledonian calc-alkaline volcanic arc: implications for source materials. EARTH PLANET SCI LETT 58, 2750.CrossRefGoogle Scholar
Tilley, C. E. 1951. The zoned contact-skarns of the Broadford area, Skye: a study of boron-fluorine metasomatism in dolomites. MINERAL MAG 29, 621–66.Google Scholar
van Breemen, O., Halliday, A. N., Johnson, M. R. W. & Bowes, D. R. 1978. Crustal additions in late Precambrian times. In: Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in northwestern Britain and adjacent regions, 81106. GEOL J SPEC ISSUE 10.Google Scholar
van Breemen, O. & Hawkesworth, C. J. 1980. Sm–Nd isotopic study of garnets and their metamorphic host rocks. TRANS R SOC EDINBURGH EARTH SCI 71, 97102.CrossRefGoogle Scholar
Wilson, G. V. 1921. The lead, zinc, copper and nickel ores of Scotland. MINER RESOUR REP MEM GEOL SURV G B 17.Google Scholar
Wilson, G. V., Eastwood, T., Pocock, R. W., Wray, D. A. & Robertson, T. 1922. Barytes and Witherite. MINER RESOUR MEM GEOL SURV G B 2 (3rd edn).Google Scholar
Zartman, R. E. & Doe, B. R. 1981. Plumbotectonics—the model. TECTONOPHYSICS 75, 135–62.CrossRefGoogle Scholar