Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T20:00:35.109Z Has data issue: false hasContentIssue false

Grenvillian magmatism of western and central Nordaustlandet, northeastern Svalbard

Published online by Cambridge University Press:  03 November 2011

Åke Johansson
Affiliation:
Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50 007, S-104 05 Stockholm, Sweden; e-mail: [email protected].
Alexander N. Larionov
Affiliation:
Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50 007, S-104 05 Stockholm, Sweden; e-mail: [email protected].
Alexander M. Tebenkov
Affiliation:
Polar Marine Geological Research Expedition, Pobeda Street 24, 189 510 Lomonosov, Russia; e-mail: [email protected].
David G. Gee
Affiliation:
Department of Geophysics, Uppsala University, Villävagen 16, S-752 36 Uppsala, Sweden; e-mail: [email protected].
Martin J. Whitehouse
Affiliation:
Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50 007, S-104 05 Stockholm, Sweden; e-mail: [email protected].
Jessica Vestin
Affiliation:
Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50 007, S-104 05 Stockholm, Sweden

Abstract

The basement of the island of Nordaustlandet, northeastern Svalbard, consists of a complex of metasedimentary and metavolcanic rocks, granites and augen gneisses, unconformably overlain by the Neoproterozoic Murchisonfjorden Supergroup. Earlier U-Pb dating of the Laponiafjellet and Kontaktberget granites has shown them to be late Grenvillian, with ages of c. 960 Ma and 940 Ma, respectively. Here, we present conventional U-Pb zircon and monazite data, single zircon Pb-evaporation data and ion microprobe data from the Kapp Hansteen Group and Svartrabbane Formation volcanic and subvolcanic rocks, and from the Fonndalen and Ringåsvatnet augen gneisses of central Nordaustlandet. The combined evidence suggests late Grenvillian magmatic ages of 940–970 Ma for all these rocks, with inherited zircons ranging in age from c. 1200 Ma to 2600 Ma. The investigated rocks vary in chemical composition from andesites to rhyolites and granites, and show generally similar trace and rare earth element patterns, with trace element compositions suggesting a volcanic arc or syn-collisional tectonic setting, and major element compositions suggesting a large sedimentary input to the magmas. Contributions from older crustal material are also supported by Nd isotope data and the presence of inherited zircons.

The Grenvillian magmatic rocks thus originated in a series of magmatic events along a continental margin over a time span not longer than 30 Ma. The volcanic rocks were extruded onto folded strata of the Brennevinsfjorden Group–Helvetesflya Formation, which must have been deposited in the time interval 1200–960 Ma. Folding of the metasediments preceded the volcanism, but was synchronous with intrusion of the augen gneiss protolith, and was followed by crustal stabilisation, uplift and erosion. This newly formed Grenvillian crust then served as basement for the deposition of the Neoproterozoic Murchisonfjorden Supergroup. The present outcrop pattern of the Grenvillian rocks is largely the result of large-scale Caledonian folding and doming.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasov, Ju. A., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirotkin, A. N., Cannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian U-Pb zircon ages of quartz porphyry and rhyolite clasts in a metaconglomerate at Vimsodden, southwestern Spitsbergen. Polar Research 14, 291302.CrossRefGoogle Scholar
Carlsson, P., Johansson, Å. & Gee, D. G. 1995. Geochemistry of the Palaeoproterozoic Bangenhuk granitoids, Ny Friesland, Svalbard. GFF 117, 107–19.CrossRefGoogle Scholar
Chappel, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Debon, F. & Le Fort, P. 1983. A chemical–mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73 (for 1982), 135–50.CrossRefGoogle Scholar
De Paolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
Flood, B., Gee, D. G., Hjelle, A., Siggerud, T. & Winsnes, T. S. 1969. The geology of Nordaustlandet, northern and central parts. Norsk Polarinstitutt Skrifter 146, 139 pp + 1 map 1:250 000.Google Scholar
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R., Wallis, R. H. & Winsnes, T. S. 1966. Radiometric age determinations on rocks from Spitsbergen. Norsk Polarinstutt Skrifter 137.Google Scholar
Gee, D. G. 1986. Svalbard's Caledonian terranes reviewed. Geologiska Föreningens i Stockholm Forhandlingar 108, 284–6.Google Scholar
Gee, D. G., Schouenborg, B., Peucat, J. J., Abakumov, S. A., Krasil'scikov, A. A. & Tebenkov, A. M. 1992. New evidence of basement in the Svalbard Caledonides: early Proterozoic zircon ages from Ny Friesland granites. Norsk Geologisk Tidsskrift 72, 181–90.Google Scholar
Gee, D. G., Johansson, Å., Ohta, Y., Tebenkov, A. M., Krasil'scikov, A. A., Balashov, Yu. A., Larionov, A. N., Gannibal, L. F. & Ryungenen, G. F. 1995. Grenvillian basement and a major unconformity within the Caledonides of Nordaustlandet, Svalbard. Precambrian Research 70, 215–34.CrossRefGoogle Scholar
Gee, D. G., Johansson, Å., Larionov, A. N. & Tebenkov, A. M., 1999. A Caledonian granitoid pluton at Djupkilsodden, central Nordaustlandet, Svalbard: age, magnetic signature and tectonic significance. Polarforschung 66 (for 1996), 1932.Google Scholar
Gee, D. G. & Hellman, F. J. 1996. Zircon Pb-evaporation ages from the Smutsbreen Formation, southern Ny Friesland: new evidence for Caledonian thrusting in Svalbard's Eastern Terrane. Zeitschrift fur Geologische Wissenschaffen 24, 429–39.Google Scholar
Gee, D. G. & Tebenkov, A. M. 1996. Two major unconformities beneath the Neoproterozoic Murchisonfjorden Supergroup in the Caledonides of central Nordaustlandet, Svalbard. Polar Research 15, 8191.CrossRefGoogle Scholar
Golovanov, N. P. & Raaben, M. E. 1967. Analogi verhnego rifeja na arhipelage Shpitsbergen [Analogues of the Upper Riphean on the Spitsbergen archipelago]. Doklady Akademii Nauk USSR 173 (5), 1123–7 [in Russian].Google Scholar
Gorochov, I. M., Krasil'scikov, A. A., Mel'nikov, N. N. & Varsavskaja, E. S. 1977. Rb/Sr vozrast kvarcevyh porfirov serii Kap Hansteen [Rb/Sr age of quartz porphyries in the Kapp Hansteen series]. Problemy Geochronologii i Geochimii Izotopov, 5161. Leningrad: Nauka [in Russian].Google Scholar
Harland, W. B. 1985. Caledonide Svalbard. In Gee, D. G. & Sturt, B. A. (eds) The Caledonide Orogen—Scandinavia and Related Areas, 9991016. Chichester: Wiley.Google Scholar
Harland, W. B. 1997. The Geology of Svalbard. Geological Society Memoir 17. London: The Geological Society.Google Scholar
Hellman, F. J., Gee, D. G., Johansson, Å. & Witt-Nilsson, P. 1997. Single-zircon Pb-evaporation geochronology constrains basement-cover relationships in the Lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chemical Geology 137, 117–34.CrossRefGoogle Scholar
Hjelle, A. 1966. The composition of some granitic rocks from Svalbard. Norsk Polarinstitutt Årbok 1965, 730.Google Scholar
Hjelle, A. 1978. An outline of the pre-Carboniferous geology of Nordaustlandet. Polarforschung 48, 6277.Google Scholar
Hjelle, A. & Lauritzen, Ø. 1982. Geological map of Svalbard 1: 500000. Sheet 3G, Spitsbergen northern part. Norsk Polarinstitutt Skrifter 154C, 15 pp + 1 map 1: 500 000.Google Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites. II. Earth and Planetary Science Letters 67, 137–50.Google Scholar
Johansson, Å., Gee, D. G., Björklund, L. & Witt-Nilsson, P. 1995. Isotope studies of granitoids from the Bangenhuk Formation, Ny Friesland Caledonides, Svalbard. Geological Magazine 132, 303–20.CrossRefGoogle Scholar
Johansson, Å. & Gee, D. G., 1999. The late Palaeoproterozic Eskolabreen granitoids of southern Ny Friesland, Svalbard Caledonides—geochemistry, age and origin. GFF 121, 113–26.CrossRefGoogle Scholar
Johansson, Å. & Larionov, A. N. 1996. U-Pb ages from the Eastern Terrane of the Svalbard Caledonides—Evidence for Palaeoproterozoic, Grenvillian and Caledonian tectonism (extended abstract). GFF 118 (Jubilee Issue), A38–A39.CrossRefGoogle Scholar
Knoll, A. H. 1982. Microfossil-based biostratigraphy of the Precambrian Hecla Hoek sequence, Nordaustlandet, Svalbard. Geological Magazine 119, 269–79.CrossRefGoogle Scholar
Knoll, A. H. & Swett, K. 1990. Carbonate deposition during the Late Proterozoic era: an example from Spitsbergen. In Knoll, A. H. & Ostrom, J. H. (eds) Proterozoic Evolution and Environment, American Journal of Science 290–A, 104–32.Google Scholar
Kober, B. 1986. Whole grain evaporation for 207Pb/206Pb age investigations on single zircons using a double filament thermal ion source. Contributions to Mineralogy and Petrology 93, 482–90.Google Scholar
Kober, B. 1987. Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigation using thermal ion mass spectrometry, and implications to zirconology. Contributions to Mineralogy and Petrology 96, 6371.Google Scholar
Krasil'scikov, A. A. 1973. Stratigrafija i paleotectonika dokembrija— rannego paleozoja Shpitsbergena [Stratigraphy and paleotectonics of the Precambrian—Early Palaeozoic of Spitsbergen]. Leningrad: Nauchno Issledovatelsky Institut Geologii Arktiki 172, 120 pp [in Russian].Google Scholar
Kulling, O. 1934. Scientific results of the Swedish-Norwegian Arctic Expedition in the summer of 1931, Part XI. The 'Hecla Hoek Formation' round Hinlopenstredet. Geografiska Annaler 16, 161254.CrossRefGoogle Scholar
Larionov, A. N., Johansson, Å., Tebenkov, A. M. & Sirotkin, A. N. 1995. U-Pb zircon ages from the Eskolabreen Formation, southern Ny Friesland, Svalbard. Norsk Geologisk Tidsskrift 75, 247–57.Google Scholar
Larionov, A. N., Tebenkov, A. M. & Gee, D. G. 1998. Pb-Pb single-zircon ages of granitoid boulders from the Vendian tillite of Wahlenbergfjorden, Nordaustlandet, Svalbard. Polar Research 17, 7180.Google Scholar
Lauritzen, Ø. & Ohta, Y. 1984. Geological map of Svalbard 1:500 000. Sheet 4G, Nordaustlandet. Norsk Polarinstitutt Skrifter 154D, 14 pp. + 1 map 1: 500 000.Google Scholar
Le Maitre, R. W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell.Google Scholar
Ludwig, K. R. 1991. ISOPLOT—a plotting and regression program for radiogenic-isotope data, version 2.56. US Geological Survey Open File Report 91—445. Denver: US Geological Survey.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Nilsson, J. 1997. The Brennevinsfjorden Group of southern Botniahalvoya, Nordaustlandet, Svalbard—structure, stratigra-phy and depositional environment (Unpublished undergraduate thesis, Department of Geology, Lund University).Google Scholar
Nilsson, P. W. 1998. The West Ny Friesland Terrane: An Exhumed Mid-Crustal Obliquely Convergent Orogen (Unpublished Ph.D. thesis, Department of Earth Sciences, Uppsala University).Google Scholar
Ohta, Y. 1982a. Relation between the Kapp Hansteen Formation and the Brennevinsfjorden Formation in Botniahalvoya, Nordaustlandet, Svalbard. Norsk Polarinstitutt Skrifter 178, 518.Google Scholar
Ohta, Y. 1982b. Lithostratigraphy of the Hecla Hoek rocks in central Nord aust landet and their relationships to the Caledonian granitic-migmatitic rocks. Norsk Polarinstitutt Skrifter 178, 4160.Google Scholar
Ohta, Y. 1985. Geochemistry of the late Proterozoic Kapp Hansteen igneous rocks of Nordaustlandet, Svalbard. Polar Research 3, 6992.Google Scholar
Ohta, Y. 1992. Recent understanding of the Svalbard basement in the light of new radiometric age determinations. Norsk Geologisk Tidsskrift 72, 15.Google Scholar
Ohta, Y., Dallmeyer, R. D. & Peucat, J. J. 1989. Caledonian terranes in Svalbard. Geological Society of America Special Paper 230, 115.Google Scholar
Ohta, Y., Larionov, A. N. & Tebenkov, A. M. 1998a. Proterozoic zircon single-grain ages from the gneiss-migmatite area of NW Spitsbergen. 23 Nordiske Geologiske Vintermøde, Århus 1998, Abstract Volume, p. 222.Google Scholar
Ohta, Y., Larionov, A. N. & Tebenkov, A. M. 1998b. Single-grain zircon ages from the crystalline rocks of NW Spitsbergen. ICAM III (3rd International Conference on Arctic Margins), Celle, Germany, 12–16 October 1998, Abstracts, pp. 133–4.Google Scholar
Okulitch, A. V. 1998. The Caledonian Pearya Terrane of northern Ellesmere Island, Canadian Arctic Archipelago. ICAM III (3rd International Conference on Arctic Margins), Celle, Germany, 12–16 October 1998, Abstracts, pp. 134–5.Google Scholar
Pearce, J. A, Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peucat, J. J., Ohta, Y., Gee, D. G. & Bernard-Griffiths, J. 1989. U-Pb, Sr and Nd evidence for Grenvillian and latest Proterozoic tectonothermal activity in the Spitsbergen Caledonides, Arctic Ocean. Lithos 22, 275–85.Google Scholar
Sandford, K. S. 1926. The geology of North-East Land (Spitsbergen). Quarterly Journal of the Geological Society of London 82, 615–65.CrossRefGoogle Scholar
Sandford, K. S. 1956. The stratigraphy and structure of the Hecla Hoek Formation and its relationship to a subjacent metamorphic complex in North-East Land (Spitsbergen). Quarterly Journal of the Geological Society of London 111, 339–62.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Steiger, R. H., Bickel, R. A. & Meier, M. 1993. Conventional U-Pb dating of single fragments of zircon for petrogenetic studies of Phanerozoic granitoids. Earth and Planetary Science Letters 115, 197209.CrossRefGoogle Scholar
Strachan, R. A., Nutman, A. P. & Friderichsen, J. D. 1995. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society 152, 779–84.Google Scholar
Stratigraphical Dictionary for Svalbard, 1991, Dallmann, W. K. and Mork, A. (eds), translated from Russian: Stratigraficeskij Slovar' Spicbergena, Gramberg, I. S., Krasil'scikov, A. A. and Semevskij, D. V. (eds), Norsk Polaristitutt Rapportserie 74, Oslo 1991.Google Scholar
Tebenkov, A. M. 1983. Poznedokembrijskie magmaticheskie formacii Severo-Vostochnoj Zemli [Late Precambrian magmatic forma- tions of Nordaustlandet]. Geologija Shpitsbergena, 7486Leningrad: PGO Sevmorgeologija [in Russian].Google Scholar
Trettin, H. P. 1987. Pearya: A composite terrane with Caledonian affinities in northern Ellesmere Island. Canadian Journal of Earth Sciences 24, 224–45.Google Scholar
Trettin, H. P., Parrish, R. & Loveridge, W. D. 1987. U-Pb age determinations on Proterozoic to Devonian rocks from northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences 24, 246–56.Google Scholar
Whitehouse, M. J., Claesson, S., Sunde, T. & Vestin, J. 1997. Ion microprobe U-Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian Complex of Gruinard Bay, northwestern Scotland. Geochimica et Cosmochimica Ada 61, 4429–38.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandards Newsletter 19, 123.Google Scholar
Zeck, H. P. & Whitehouse, M. J. 1999. Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages for a Betic- Rif core complex, Alpine belt, W Mediterranean—consequences for its P-T-t path. Contributions to Mineralogy and Petrology 134, 134–49.Google Scholar