Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T13:28:34.307Z Has data issue: false hasContentIssue false

The Granton ‘shrimp-bed’, Edinburgh—a Lower Carboniferous Konservat-Lagerstätte

Published online by Cambridge University Press:  03 November 2011

D. E. G. Briggs
Affiliation:
D. E. G. Briggs, Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, England.
N. D. L. Clark
Affiliation:
N. D. L. Clark, Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, Scotland.
E. N. K. Clarkson
Affiliation:
E. N. K. Clarkson, Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland.

Abstract

Newly discovered crustaceans from the Granton ‘shrimp-bed’ (Dinantian, Lower Oil Shale Group) are described: Bairdops elegans, Minicaris sp., Palaemysis, Tealliocaris cf. woodwardi, Pseudogalathea ornatissima, Anthracocaris scotica, Paraparchites cf. okeni, Beyrichiopsis plicata, and Eocypridina cf. aciculata, and new observations on Waterstonella grantonensis are reported. Tealliocaris woodwardi alone is recorded from bed o, a level ca 1 m below the ‘shrimp-bed’. The Granton ‘shrimp-bed’ biota is reviewed—the geological and lithological context of the deposit, the distribution and taphonomy of the biota, its life environment, palaeoecology, the likely causes of mortality, and comparisons are made with contemporaneous shrimp biotas. The nature of this unusual Konservat-Lagerstätte reflects conditions in the sheltered, periodically emergent lagoon which it represents.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K. & Smith, M. P. 1986. The affinities of conodonts—new evidence from the Carboniferous of Edinburgh, Scotland. LETHAIA 19, 279–91.CrossRefGoogle Scholar
Allison, P. A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. GEOLOGY 14, 979–81.2.0.CO;2>CrossRefGoogle Scholar
Allison, P. A. 1988a. The decay and mineralization of proteinaceous macrofossils. PALEOBIOLOGY 14, 139–54.CrossRefGoogle Scholar
Allison, P. A. 1988b. Konservat-Lagerstätten: cause and classification. PALEOBIOLOGY 14, 331–44.CrossRefGoogle Scholar
Benmore, R. A., Coleman, M. L. & McArthur, J. M. 1983. Origin of sedimentary francolite from its sulphur and carbon isotope composition. NATURE 302, 516–18.CrossRefGoogle Scholar
Berner, R. A. & Raiswell, R. 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. GEOLOGY 12, 365–8.2.0.CO;2>CrossRefGoogle Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1983. The Lower Carboniferous Granton ‘shrimp-bed’, Edinburgh. In Briggs, D. E. G. & Lane, P. D. (eds) Trilobites and Other Arthropods: Papers in Honour of Professor H. B. Whittington, F.R.S. SPECIAL PAPERS IN PALAEONTOLOGY 30, 161–78.Google Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1985. The Lower Carboniferous shrimp Tealliocaris from Gullane, East Lothian, Scotland. TRANS R SOC EDINBURGH EARTH SCI 76, 173201.Google Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1987a An enigmatic chordate from the Lower Carboniferous Granton ‘shrimp-bed’ of the Edinburgh district, Scotland. LETHAIA 20, 107–15.Google Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1987b The first tomopterid, a polychaete from the Carboniferous of Scotland. LETHAIA 20, 257–62.CrossRefGoogle Scholar
Briggs, D. E. G. & Clarkson, E. N. K. 1989. Environmental controls on the taphonomy and distribution of Carboniferous malacostracan crustaceans. TRANS R SOC EDINBURGH EARTH SCI 80, 293301.Google Scholar
Briggs, D. E. G., Clarkson, E. N. K. & Aldridge, R. J. 1983. The conodont animal. LETHAIA 16, 114.CrossRefGoogle Scholar
Briggs, D. E. G. & Williams, S. H. 1981. The restoration of flattened fossils. LETHAIA 14, 157–64.CrossRefGoogle Scholar
Brooks, H. K. 1969. Eocarida. In Moore, R. C. (ed.) Treatise on Invertebrate Palaeontology, R, 332345. Kansas: Geol. Soc. Am. and Univ. Kansas Press.Google Scholar
Cater, J. M. L. 1987. Sedimentology of part of the Lower Oil-Shale Group (Dinantian) sequence at Granton, including the Granton ‘shrimp-bed’. TRANS R SOC EDINBURGH EARTH SCI 78, 2940.CrossRefGoogle Scholar
Cater, J. M. L., Briggs, D. E. G. & Clarkson, E. N. K. 1989. Shrimp-bearing sedimentary successions in the Lower Carboniferous (Dinantian) Cementstone and Oil Shale Groups of northern Britain. TRANS R SOC EDINBURGH EARTH SCI 80, 515.CrossRefGoogle Scholar
Clarkson, E. N. K. 1985. Carboniferous crustaceans. GEOLOGY TODAY (1985), 1115.Google Scholar
Coleman, M. L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. PHILOS TRANS R SOC LONDON A315, 3956.Google Scholar
Etheridge, R. 1879. On the occurrence of the genus Dithyrocaris in the Lower Carboniferous, or Calciferous Sandstone Series, of Scotland, and that of a second species of Anthrapalaemon in these beds. Q J GEOL SOC LOND 35, 464474.CrossRefGoogle Scholar
Factor, D. F. & Feldmann, R. M. 1985. Systematics and paleoecology of malacostracan arthropods in the Bear Gulch Limestone (Namurian) of Central Montana. ANNALS CARNEGIE MUSEUM 54, 319–56.CrossRefGoogle Scholar
Greensmith, T. 1962. Rhythmic deposition in the Carboniferous Oil-Shale Group of Scotland. J GEOL 70, 355–64.CrossRefGoogle Scholar
Hesselbo, S. P. & Trewin, N. H. 1984. Deposition, diagenesis and structures of the Cheese Bay Shrimp Bed, Lower Carboniferous, East Lothian. SCOTT J GEOL 20, 281–96.CrossRefGoogle Scholar
Latham, M. H. 1932. Scottish Carboniferous Ostracoda. TRANS R SOC EDINBURGH 57, 352–95.Google Scholar
Maddox, S. J. & Andrews, J. E. 1987. Lithofacies and stratigraphy of a Dinantian non-marine dolostone from the Lower Oil-Shale Group of Fife and West Lothian. SCOTT J GEOL 23, 129–47.CrossRefGoogle Scholar
Peach, B. N. 1882. On some new Crustacea from the Lower Carboniferous rocks of Eskdale and Liddesdale. TRANS R SOC EDINBURGH 30, 7391.CrossRefGoogle Scholar
Peach, B. N. 1883. Further researches among the Crustacea and Arachnida of the Carboniferous rocks of the Scottish border. TRANS R SOC EDINBURGH 30, 511–29.CrossRefGoogle Scholar
Peach, B. N. 1908. A monograph of the higher Crustacea of the Carboniferous rocks of Scotland. MEM GEOL SURV GB PALAEONTOL.CrossRefGoogle Scholar
Robinson, E. 1978 The Carboniferous. In Bate, R. & Robinson, E. (eds) A stratigraphical Index of British Ostracoda. GEOL J SPEC. ISSUE 8, 121–66. Liverpool: Seel House Press.Google Scholar
Rolfe, W. D. I., Schram, F. R., Pacaud, G., Sotty, D. & Secretan, S. 1982 A remarkable Stephanian biota from Montceau-les-Mines, France. J PALEONT 56, 426–48.Google Scholar
Schram, F. R. 1979a. British Carboniferous Malacostraca. FIELDIANA GEOL 40, 1129.Google Scholar
Schram, F. R. 1979b. The genus Archaeocaris, and a general review of the Palaeostomatopoda (Hoplocarida: Malacostroca). TRANS SAN DIEGO SOC NAT HIST 19, 5766.Google Scholar
Schram, F. R. 1981a. Late Palaeozoic crustacean communities. J PALEONT 55, 126–37.Google Scholar
Schram, F. R. 1981b. On the classification of Eumalacostraca. J CRUST BIOL 1, 110.CrossRefGoogle Scholar
Schram, F. R. 1983. Lower Carboniferous biota of Glencartholm, Eskdale, Dumfriesshire. SCOTT J GEOL 19, 115.CrossRefGoogle Scholar
Schram, F. R. 1984a. Fossil Syncarida. TRANS SAN DIEGO SOC NAT HIST 20, 189246.Google Scholar
Schram, F. R. 1984b. Relationships within eumalacostracan Crustacea. TRANS SAN DIEGO SOC NAT HIST 20, 301–12.CrossRefGoogle Scholar
Schram, F. R. 1986. Crustacea. 606 pp. New York: Oxford University Press.Google Scholar
Schram, F. R. & Horner, J. 1978. Crustacea of the Mississippian Bear Gulch Limestone of central Montana. J PALEONT 52, 394406.Google Scholar
Schram, F. R., Sieg, J. & Malzahn, E. 1986. Fossil Tanaidacea. TRANS SAN DIEGO SOC NAT HIST 21, 127–44.Google Scholar
Siveter, D. J., Vannier, J. M. C. & Palmer, D. 1987. Silurian myodocopid ostracodes: their depositional environments and the origin of their shell microstructures. PALAEONTOLOGY 30, 783813.Google Scholar
Sohn, I. G. 1977. Radiate shell structures in Paleozoic myodocopid and palaeocopid ostracodes are epigenetic. J RES US GEOL SURV 5, 125–33.Google Scholar
Stürmer, W. & Bergström, J. 1973. New discoveries on trilobites by X-rays. PALÄONT Z 47, 104–41.CrossRefGoogle Scholar
Tait, D. 1925. Notice of a shrimp-bearing limestone in the Calciferous Sandstone Series at Granton, near Edinburgh. TRANS EDINBURGH GEOL SOC 11, 131–5.CrossRefGoogle Scholar
Whittington, H. B. 1971. The Burgess Shale: history of research and preservation of fossils. In Proceedings of the North American Paleontological Convention, Chicago, 1969, part I, 1170–201. Lawrence, Kansas: Allen Press.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. 151 pp. Yale University Press.Google Scholar
Wood, S. P. 1982. New basal Namurian (Upper Carboniferous) fishes and crustaceans found near Glasgow. NATURE 297, 574–7.CrossRefGoogle Scholar