Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T20:07:46.512Z Has data issue: false hasContentIssue false

Granites and a wet convecting ultramafic planenet

Published online by Cambridge University Press:  03 November 2011

W. S. Fyfe
Affiliation:
Faculty of Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Abstract

Granites and their associated extrusive rocks are formed in large volumes whenever the continental crust is heated by rising hot mantle, or thickened by collision processes. The complexity of rocks of the granite family is related to the complexity of the continental crust itself and the complexity of processes which lead to thermal perturbations. The light continental crust acts as a density filter which screens out heavy mantle magmas and leads to complex underplating and magma mixing processes. Perhaps the primary cause of crustal melting is the deep recycling of volatiles which are fixed in the oceanic crust before subduction. Modern studies of subduction and collision processes show the large scale and complexity of processes which modify old continental crust.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Broecker, W. S. 1985. How to build a habitable planet. New York: Eldigio Press, Palisades.Google Scholar
Carnegie Institution of Washington 1986. Sediment subduction in volcanic arcs: Answers from 10Be, 8185. Washington: Carnegie Institution.Google Scholar
Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A. & Rosencrantz, E. 1981. Heterogeneous nature of oceanic crust and upper mantle: a perspective from the Bay of Islands ophiolite complex. In Emiliani, C.The oceanic lithosphere, 305338. New York: John Wiley.Google Scholar
Chopin, C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. CONTRIB MINERAL PETROL 86, 107118.CrossRefGoogle Scholar
Clowes, R. M., Brandon, M. I., Green, A. G., Yorath, C. J., Sutherland, Brown A., Kanasewich, E. R. & Spencer, C. 1987. Lithoprobe—Southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections. CAN J EARTH SCI 24, 3151.CrossRefGoogle Scholar
Daly, R. A. 1933. Igneous rocks and the depths of the Earth. New York: McGraw-Hill.Google Scholar
Drummond, M. S., Ragland, P. C. & Wesolowski, D. 1986. An example of trondhjemite genesis by means of alkali metasomatism: Rockford granite, Alabama Appalachians. CONTRIB MINERAL PETROL 93, 98113.Google Scholar
Dziewonski, A. M. & Woodhouse, J. H. 1987. Global images of the Earth's interior. Science 236, 3748.Google Scholar
Ejiliani, C. 1981. The oceanic lithosphere, The Sea 7. New York: John Wiley.Google Scholar
France-Lanord, C. & Le Fort, P. 1988. Crustal melting and granite genesis during the Himalayan collision orogenesis. TRANS R SOC EDINBURGH EARTH SCI 79, 183195.Google Scholar
Fryer, P., Ambos, F. L. & Hussong, D. M. 1985. Origin and emplacement of Mariana forearc seamounts. GEOLOGY 13, 774777.2.0.CO;2>CrossRefGoogle Scholar
Fyfe, W. S. 1986. Fluids in deep continental crust. AM GEOPHYS UNION GEODYNAMICS SER 14, 3339.CrossRefGoogle Scholar
Fyfe, W. S. 1987. Granites and thermal structure in the lithosphere. GEOL RUNDSCH 76, 1522.CrossRefGoogle Scholar
Fyfe, W. S. 1988. Magma underplating of continental crust: a process quantitatively underestimated? In Fountain, J. C. (ed.). Geochemical and geophysical aspects of the interactions and evolution of magmas and rocks of the crust. Athens: Theophrastus Publications (in press).Google Scholar
Fyfe, W. S. & Lonsdale, P. 1981. Ocean floor hydrothermal activity. In Emiliani, C.The oceanic lithosphere, 589638. New York: John Wiley.Google Scholar
Fyfe, W. S. & McBirney, A. R. 1975. Subduction and the structure of andesitic volcanic belts. AM J SCI 275A, 285297.Google Scholar
Fyfe, W. S., Price, N. J. & Thompson, A. D. 1978. Fluids in the Earth's crust. Amsterdam: Elsevier.Google Scholar
Fyfe, W. S., Ribeiro, A. & Barriga, F. J. A. S. 1987. On tectonic fluidisation and injection through the lithosphere. NATO research workshop on fluid movements, element transport, and the composition of the deep crust. Lindas, Norway, (abstract).Google Scholar
Gilbert, G. K. 1893. Continental problems. BULL GEOL SOC AM 41, 179190.Google Scholar
Gilluly, J. 1971. Plate tectonics and magmatic evolution. BULL GEOL SOC AM 82, 23872396.CrossRefGoogle Scholar
Gough, D. I. 1981. Magnetomer arrays and geodynamics. AM GEOPHYS UNION GEODYNAMICS SER 5, 8795.CrossRefGoogle Scholar
Gregory, R. G. & Durrance, E. M. 1987. Helium in soil gas: a method of mapping groundwater circulation in fractured plutonic rock. J APPL GEOCHEM 2, 1124.CrossRefGoogle Scholar
Herzberg, C. T. 1984. Chemical stratification in the silicate Earth. EARTH PLANET SCI LETT 67, 249260.Google Scholar
Herzberg, C. T., Fyfe, W. S. & Carr, M. J. 1983. Density constraints on the formation of the continental Moho and crust. CONTRIB MINERAL PETROL 84, 15.CrossRefGoogle Scholar
Hilde, T. W. C. & Uyeda, S. 1983. Convergence and subduction. TECTONOPHYSICS 99, 85400.Google Scholar
Huppert, H. E. & Sparks, R. S. J. 1988. The fluid dynamics of crustal melting by injection of basaltic sills. TRANS R SOC EDINBURGH EARTH SCI 79, 237243.Google Scholar
Johannes, W. 1982. Origin and evolution of a migmatite. CONTRIB MINERAL PETROL 79, 114123.CrossRefGoogle Scholar
Johannes, W. 1984. Beginning of melting in the granite system Qz-Or-Ab-An-H2O. CONTRIB MINERAL PETROL 86, 264275.CrossRefGoogle Scholar
Kennedy, L. P. 1984. The geology and geochemistry of the Archean Flavrian pluton, Noranda, Quebec. Doctoral dissertation, The University of Western Ontario.Google Scholar
Lallemant, S., Lallemand, S., Jolivet, L. & Huchon, P. 1986. Kaiko: l'exploration des fosses du Japon. LA RECH 182, 13441357.Google Scholar
Latter, J. H. 1987. Volcanoes and volcanic risk in the Circum-Pacific. PROC PAC RIM CONGR 87, AUST INST MIN METALL, 745752.Google Scholar
Lewis, B. T. R. & Syndsman, W. E. 1977. Evidence for a low velocity layer at the base of oceanic crust. NATURE 266, 340344.CrossRefGoogle Scholar
Lister, C. R. B. 1972. On the thermal balance of a mid-ocean ridge. GEOPHYS J R AST SOC 26, 515535.CrossRefGoogle Scholar
Lister, C. R. B. 1977. Qualitative models of spreading center processes, including hydrothermal penetration. TECTONOPHYSICS 37, 203218.CrossRefGoogle Scholar
MacDonald, A. H. & Fyfe, W. S. 1985. Rates of serpentinization in seafloor environments. TECTONOPHYSICS 116, 123132.CrossRefGoogle Scholar
Munha, J., Fyfe, W. S. & Kerrich, R. 1980. Adularia, the characteristic mineral of felsic spilites. CONTRIB MINERAL PETROL 75, 1519.Google Scholar
Oxaal, U., Murat, M., Boger, F., Aharony, A., Feder, J. & Jossang, T. 1987. Viscous fingering on percolation clusters. NATURE 329, 3237.CrossRefGoogle Scholar
Pham, V. N., Boyer, D., Theome, P., Yuan, X. C., Li, L. & Jin, G. Y. 1986. Partial melting zones in Southern Tibet from magnetotelluric results. NATURE 319, 310312.CrossRefGoogle Scholar
Pine, R. J. & Batchelor, A. S. 1984. Downward migration of shearing in jointed rock during hydraulic injections. INT J ROCK MECH MIN SCI GEOMECH 21, 249263.Google Scholar
Pollack, H. N. 1986. Cratonization and thermal evolution of the mantle. EARTH PLANET SCI LETT 80, 175182.CrossRefGoogle Scholar
Press, F. & Siever, R. 1986. Earth. New York: W. H. Freeman.Google Scholar
Rice, A. 1985. The mechanism of the Mt. St. Helens eruption and speculations regarding Soret effects in planetary dynamics. GEOPHYS SURV 1, 303384.Google Scholar
Rona, P. A., Bostroum, K., Laubier, L. & Smith, K. L. 1983. Hydrothermal processes at seafloor spreading centres. New York: Plenum Press.Google Scholar
Spooner, E. T. C. & Fyfe, W. S. 1973. Sub-sea-floor metamorphism, heat and mass transfer. CONTRIB MINERAL PETROL 42, 287304.CrossRefGoogle Scholar
Spulber, S. D. & Rutherford, M. J. 1983. The origin of rhyolite and plagiogranite in oceanic crust. J PETROL 24, 125.CrossRefGoogle Scholar
Stolper, E. & Walker, D. 1980. Melt density and average composition of basalt. CONTRIB MINERAL PETROL 74, 712.Google Scholar
Straus, J. M. & Schubert, G. 1977. Thermal convection of water in a porous medium: effect of temperature- and pressure dependent thermodynamic and transport properties. J GEOPHYS RES 82, 325333.CrossRefGoogle Scholar
Taylor, H. P. 1983. Oxygen and hydrogen isotope studies of hydrothermal interactions at submarine and subaerial spreading centres. In Rona, P. A., Bostrom, K., Laubier, L. & Smith, K. L. (eds) Hydrothermal processes at seafloor spreading centres, 83140. New York: Plenum Press.CrossRefGoogle Scholar
Taylor, H. P. 1988. Oxygen, hydrogen and strontium isotope constraints on the origin of granites. TRANS R SOC EDINBURGH EARTH SCI 79, 317338.Google Scholar
Thompson, G. 1983. Basalt-seawater interactions. In Rona, P. A., Bostrom, K., Laubier, L. & Smith, K. L. (eds). Hydrothermal processes at seafloor spreading centres, 225278. New York: Plenum Press.CrossRefGoogle Scholar
Turcotte, D. L. & Schubert, G. 1982. Geodynamics. New York: John Wiley.Google Scholar
Uyeda, S. 1978. The new view of the Earth. San Francisco: W. H. Freeman.Google Scholar
Uyeda, S. 1983. Comparative subductology. EPISODES 1983, 1924.CrossRefGoogle Scholar
Vibetti, N. J., Kerrich, R. & Fyfe, W. S. 1985. Presence of Ca-Na dominated hypersaline brines in quartz-calcsilicate veins of Troodos ophiolite (Cyprus). AM GEOPHYS UNION, SAN FRANCISCO MEETING DECEMBER (abstract).Google Scholar
White, A. J. R., & Chappell, B. W. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. TRANS R SOC EDINBURGH 79, 169181.Google Scholar
Wolery, T. J. & Sleep, N. H. 1976. Hydrothermal circulation and geochemical flux at mid-ocean ridges. J GEOL 84, 249275.CrossRefGoogle Scholar