Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T16:53:32.121Z Has data issue: false hasContentIssue false

Granite sheeted complexes: evidence for the dyking ascent mechanism

Published online by Cambridge University Press:  03 November 2011

Donald H. W. Hutton
Affiliation:
Donald H. W. Hutton, Department of Geological Sciences, University of Durham, Durham DH1 3LE, England, U.K.

Abstract

A review of granite emplacement mechanisms in transcurrent, extensional and contractional (thrust sense) shear zones reveals that in all three tectonic settings the plutons have been constructed by multiple granite sheeting parallel to the shear zone walls and deformation fabrics. The sheets and plutons are non-Andersonian in type and were emplaced obliquely to the principal stress directions. Their shape and orientation is more likely to reflect the exploitation of faults and shear zones which were active during emplacement. Sheeting (dyking) is therefore also likely to be the mechanism of ascent along fault zones in the crust.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. M. 1951. The dynamic of faulting. Edinburgh: Oliver & Boyd.Google Scholar
Bateman, R. 1984. On the role of diapirism in the segregation, ascent and final emplacement of granitoids. TECTONO-PHYSICS 110, 210–31.CrossRefGoogle Scholar
Brew, D. A. & Ford, A. B. 1981. The Coast Plutonic Complex Sill, Southeastern Alaska. In Albert, N. R. D. & Hudson, T. (eds) The United States Geological Survey in Alaska—accomplishments during 1979, USGS CIRC 823–B, 96–9.Google Scholar
Bridgewater, D., Sutton, J. & Watterson, J. 1974. Crustal downfolding associated with igneous activity. TECTONO-PHYSICS 21, 5777.CrossRefGoogle Scholar
Brun, J. P., Gapais, D., Cogne, J. P., Ledru, P. & Vigneresse, J. L. 1990. The Flamanville Granite (Northwest France): an unequivocal example of a syntectonically expanding pluton. GEOL J 25, 271–86.CrossRefGoogle Scholar
Castro, A. 1986. Structural pattern and ascent model in the Central Extramadura batholith, Hercynian belt, Spain. J STRUCT GEOL 8, 633–45.Google Scholar
Courrioux, G. 1987. Oblique diapirism: the Criffel granodiorite/granite zoned pluton (southwest Scotland). J STRUCT GEOL 9, 89124.CrossRefGoogle Scholar
Crawford, M. L. & Hollister, L. S. 1982. Contrasts of metamorphic and structural histories across the Work Channel Lineament, Coast Plutonic Complex, British Columbia. J GEOPHYS RES 87, 3847–60.CrossRefGoogle Scholar
Daly, S. F. & Raefsky, A. 1985. On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium. GEOPHYS J R ASTRON SOC 83, 657–82.CrossRefGoogle Scholar
de Wit, M. J., Armstrong, R., Hart, R. J. & Wilson, A. H. 1987. Felsic igneous rocks within 3·3 to 3·5 Ga Barberton Greenstone Belt: high crustal level equivalents of the surrounding tonalite-trondjemite terrain, emplaced during thrusting. TECTONICS 6, 529–49.CrossRefGoogle Scholar
England, R. W. 1990. The identification of granitic diapirs. J GEOL SOC LONDON 147, 931–3.CrossRefGoogle Scholar
Guineberteau, B., Bouchez, J. L. & Vigneresse, J. L. 1987. The Mortagne Granite pluton (France) emplaced by pull-apart along a shear zone: structural and gravimetric arguments, regional implications. BULL GEOL SOC AM 99, 763–70.2.0.CO;2>CrossRefGoogle Scholar
Hall, A. 1987. Igneous petrology. Harlow: Longman.Google Scholar
Holder, M. T. 1979. An emplacement mechanism for post tectonic granites and its implications for their geochemical features. In Atherton, M. J. (eds) Origin of granite batholiths: geochemical evidence, 116128. Nantwich: Shiva.CrossRefGoogle Scholar
Hutton, D. H. W. 1982. A tectonic model for the emplacement of the Main Donegal Granite, NW Ireland. J GEOL SOC LONDON 139, 615–31.CrossRefGoogle Scholar
Hutton, D. H. W. 1988b. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. TRANS R SOC EDINBURGH EARTH SCI 79, 245–55.Google Scholar
Hutton, D. H. W. & Dewey, J. F. 1986. Palaeozoic terrane accretion in the Western Irish Caledonides. TECTONICS 5, 1115–24.CrossRefGoogle Scholar
Hutton, D. H. W. & Ingram, G. M. 1992. The Great Tonalite Sill of South East Alaska and British Columbia: emplacement into an active contractional high angle reverse shear zone. TRANS R SOC EDINBURGH EARTH SCI 83, 383–6.Google Scholar
Hutton, D. H. W., Dempster, T. J., Brown, P. E. & Becker, S. M. 1990. A new mechanism of granite emplacement: intrusion in active extensional shear zones. NATURE 343, 452–5.CrossRefGoogle Scholar
John, B. E. 1988. Structural reconstruction and zonation of a tilted mid-crustal magma chamber: the felsic Chemehuevi Mountains plutonic suite. GEOLOGY 16, 613–7.2.3.CO;2>CrossRefGoogle Scholar
Koukoukevlas, I. & Pe-Piper, G. 1991. The Oligocene Xanthi pluton, northern Greece: a granodiorite emplaced during regional extension. J GEOL SOC LONDON 148, 749–58.CrossRefGoogle Scholar
Lagarde, J. L., Omar, S. A. & Roddaz, B. 1990. Structural characteristics of granitic plutons emplaced during weak regional deformation: examples from late Carboniferous plutons, Morocco. J STRUCT GEOL 12, 805–21.CrossRefGoogle Scholar
Lister, J. R. & Kerr, R. C. 1991. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J GEOPHYS RES 96 (B6), 10,04977.CrossRefGoogle Scholar
Marsh, B. D. 1982. On the mechanics of igneous diapirism, stoping and zone melting. AM J SCI 282, 808–55.CrossRefGoogle Scholar
McCaffrey, K. J. W. 1989. The emplacement and deformation of granitic rocks in a transpressional shear zone: the Ox Mountains Igneous Complex. Unpublished Ph.D. Thesis, University of Durham.Google Scholar
McCaffrey, K. J. W. 1992. Igneous emplacement in a transpressive shear zone: the Ox Mountains igneous complex. J GEOL SOC LONDON (in press).CrossRefGoogle Scholar
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 135–56.Google Scholar
Morand, V. J. 1988. Emplacement and deformation of the Wyangala Batholith, New South Wales. AUS J EARTH SCI 35, 339–53.Google Scholar
Nironen, M. 1989. Emplacement and structural setting of granitoids in the early Proterozoic Tampere and Savo schist belts, Finland—implications for contrasting crustal evolution. GEOL SURV FINLAND BULL 346.Google Scholar
Pitcher, W. S. 1970. Ghost stratigraphy in granites: a review. In Newall, G & Rast, N. (eds) Mechansims of igneous intrusion. GEOL J SPEC PUBL 2, 123140.Google Scholar
Pitcher, W. S. & Berger, A. R. 1972. The Geology of Donegal: a study of granite emplacement and unroofing. London: Wiley.Google Scholar
Pitcher, W. S. & Read, H. H. 1959. The Main Donegal Granite. Q J GEOL SOC LONDON 114, 259305.CrossRefGoogle Scholar
Pollard, D. D. & Johnston, A. M. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah. II Bending and failure of overburden layers and sill formation. TECTONOPHYSICS 18, 311–45.CrossRefGoogle Scholar
Ramsay, J. G. 1989. Emplacement Kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J. STRUCT GEOL 11, 191209.CrossRefGoogle Scholar
Roberts, J. L. 1970. The intrusion of magma into brittle rocks. In Newall, G & Rast, N. (eds) Mechanisms of igneous intrusion. GEOL J SPEC PUBL 2, 287338.Google Scholar
Schmidt, C. J., Smedes, H. W. & O'Neill, J. M. 1990. Syncompressional emplacement of the Boulder and Tobacco Root Batholiths (Montana U.S.A.) by pull apart along old fault zones. GEOL J 25, 305–18.CrossRefGoogle Scholar
Turcotte, D. L. & Emerman, S. H., 1985. Magma fracture as a mechanism for magma migration. EOS 66, 361.Google Scholar
White, N. J. & Hutton, D. H. W. 1985. The structure of the Dalradian rocks in West Fanad, County Donegal. IRISH J EARTH SCI 7, 7992.Google Scholar