Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T22:18:31.679Z Has data issue: false hasContentIssue false

A global perspective on the Scottish Caledonides

Published online by Cambridge University Press:  03 November 2011

Ian W. D. Dalziel
Affiliation:
Ian W. D. Dalziel, University of Texas at Austin, Institute for Geophysics and Department of Geological Sciences, 4412 Spicewood Springs Road, Bldg. 600, Austin, Texas 78759–8500 U.S.A., also affiliated with Tectonics Special Research Centre Department of Geology and Geophysics University of Western Australia, Nedlands, WA 6907,Australia, e-mail: [email protected]

Abstract

ABSTRACT

The Scottish Caledonides constitute less than 10% of the length of the Caledonian-Appalachian orogen, the rocks of which define one major margin of the Laurentian craton in Neoproterozoic-Palaeozoic times. Scotland was located, however, in a critical position at the tip of a major cratonic promontory bounded by the Caledonian and Appalachian segments of that margin. Isotopic dates from minerals and rocks collected in the Scottish Highlands have been regarded for 40 years as indicating a Neoproterozoic history of compressive orogenesis that is absent in N America and Greenland. They have therefore been taken by some authors to indicate an origin exotic to Laurentia for rocks of the Northern and Grampian Highlands S and E of the Moine thrust belt. An alternative explanation is that the Neoproterozoic rocks in the Scottish Highlands are all related to the two-stage ‘breakout’ of a discrete rift-bounded Laurentian continent from the core of the Rodinian supercontinent, believed to have assembled at the end of the Mesoproterozoic.

Traditional reconstructions of the late Neoproterozoic–Early Palaeozoic Earth oppose the proto-Caledonian/Appalachian margin of Laurentia and the W African craton of the newly assembled Gondwanaland. However, consideration of the global inventory of late Precambrian rifted margins, their relation to Grenvillian orogenic belts and of scale, leads to the hypothesis that the conjugate was the proto-Andean margin of S America. Recent recognition that the Cambrian and Lower Ordovician strata of the northwestern Argentine Precordillera and their underlying Grenvillian basement are unquestionably of Laurentian derivation, while not definitive, does point in this direction. If correct, this means that even the presence of Neoproterozoic orogenesis need not imply an exotic origin, as Neoproterozoic orogens are widespread in S America.

Traditional models show an Early Ordovician lapetus ocean basin approximately 4500 km wide, but the remarkably synchronous Ordovician collision of arcs and other terranes with the Laurentian and Gondwanan cratons from Argentina to the British Isles, suggests that this premise may be incorrect. The Appalachian–Caledonian orogen may rather have resulted from close and complex tectonic interaction between Laurentia and Gondwana, involving intervening volcanic arcs and other terranes. The interaction may have taken place during a clockwise transit of Laurentia around the proto-Andean margin to its late Caledonian–Scandian collision with Baltica, and the final suturing of Pangaea at the close of the Palaeozoic era. A modern analogue may be the interaction between Australia and Asia, involving intervening volcanic arcs and other terranes of the western Pacific Ocean basin, from ~ 50 Ma through the Present, and into the future.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderton, R. 1982. Dalradian deposition and the late Precambrian–Cambrian history of the N. Atlantic region: a review of the early evolution of the Iapetus Ocean. Journal of the Geological Society, London 139, 421–31.CrossRefGoogle Scholar
Astini, R. A., Benedetto, J. L. & Vaccari, N. E 1995. The Early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane–a geodynamic model. Geological Society of America Bulletin 107, 253–73.2.3.CO;2>CrossRefGoogle Scholar
Bailey, E. B. 1929. The Palaeozoic mountain systems of Europe and America. British Association of Advanced Science Reports, 96th Annual Meeting, Glasgow, 5776.Google Scholar
Bluck, B. J. 2001. Caledonian and related events in Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 91 (for 2000), 375404.CrossRefGoogle Scholar
Bluck, B. J. & Dempster, T. J. 1991. Exotic metamorphic terranes in the Caledonides; tectonic history of the Dalradian Block, Scotland Geology 19, 1133–6.2.3.CO;2>CrossRefGoogle Scholar
Bond, G. C., Nickeson, P. A. & Kominz, M. A. 1984. Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories. Earth and Planetary Science Letters 70, 325–45.CrossRefGoogle Scholar
Borrello, A. V. 1965. Sobre la presencia del Cámbrico inferior del olenellidiano en la Sierra de Zonda, Precordillera de San Juan. Ameghiniana III, 313–18.Google Scholar
Caldas, J. 1979. Evidencias de una glaciacion Precambriana en la Costa Sur del Peru. Segundo Congreso Geologico Chileno J29–J38.Google Scholar
Dalla Salda, L. H., Cingolani, C. A. & Varela, R. 1992a. The Early Paleozoic orogenic belt of the Andes in southwestern South America: Result of Laurentia-Gondwana collision? Geology 20, 617–20.2.3.CO;2>CrossRefGoogle Scholar
Salda, L. H.Dalla, Dalziel, I. W. D., Cingolani, C.A. & Varela, R. 1992b. Did the Taconic Appalachians continue into southern South America? Geology 20, 1059–62.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D. 1966. A structural study of the granitic gneiss of Western Ardgour, Argyll and Inverness-shire. Scottish Journal of Geology 2, 125–52.CrossRefGoogle Scholar
Dalziel, I. W. D. 1991. Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology 19, 598601.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D. 1992. On the organization of American plates in the Neoproterozoic and the breakout of Laurentia. GSA Today 2, 237–41.Google Scholar
Dalziel, I. W. D. 1993. Tectonic tracers and the origin of the proto-Andean margin. XII Congreso Geologico Argentino y II Congreso de Exploración de Hidrocarburos III, 367–74.Google Scholar
Dalziel, I. W. D. 1994. Precambrian Scotland as a Laurentia-Gondwana Link—Origin and Significance of Cratonic Promontories. Geology 22, 589–92.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D. 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin 108, 1642.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D., Salda, L. H. Dalla & Gahagan, L. M. 1994. Paleozoic Laurentia–Gondwana interaction and the origin of the Appalachian-Andean mountain system. Geological Society of America Bulletin 106, 243–52.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D., Salda, L. H. Dalla, Cingolani, C. & Palmer, A. R. 1966. The Argentine Precordillera: a Laurentian terrane? (Penrose Conference Report). GSA Today 6, 1618.Google Scholar
Dalziel, I. W. D., Mosher, S. & Gahagan, L. M. 2000a. Laurentia–Kalahari Collision and the Assembly of Rodinia. Journal of Geology 108, 499513.CrossRefGoogle Scholar
Dalziel, I. W. D., Lawver, L. A. & Murphy, J. B. 2000b. Plumes, orogenesis and supercontinental fragmentation. Earth and Planetary Science Letters 178, 111.CrossRefGoogle Scholar
Dalziel, I. W. D. & Soper, N. J. 2001. Neoproterozoic extension and Early Paleozoic orogeny on the Scottish Promontory of Laurentia: paleogeographic and tectonic implications. Journal of Geology 109, 299317.CrossRefGoogle Scholar
Dewey, J. F. 1971. A model for the Lower Palaeozoic evolution of the southern margin of the early Caledonides of Scotland and Ireland. Scottish Journal of Geology 7(3), 219–40.CrossRefGoogle Scholar
Dewey, J. F. 1977. Suture zone complexities. Tectonophysics 40, 5367.CrossRefGoogle Scholar
DuToit, A. L. 1937. Our Wandering Continents. Edinburgh: Oliver and Boyd.Google Scholar
Evans, J. A., Fitches, W. R. & Muir, R. J. 1998. Laurentian clasts in a Neoproterozoic tillite from Scotland. Journal of Geology 106, 361–6.CrossRefGoogle Scholar
Friend, C. R. I., Kinny, P. D., Rogers, G., Strachan, R. A. et al. 1997. U–Pb Zircon geochronological evidence for Neoproterozoic events in the Glenfinnan Group (Moine Supergroup): the formation of Ardgour granite gneiss, north-west Scotland. Contributions to Mineralogy and Petrology 128, 101–13.CrossRefGoogle Scholar
Gose, W. A., Helper, M. A., Connelly, J. N., Hutson, F. E. et al. 1997. Paleomagnetic data U–Pb isotopic ages from Coats Land, Antarctica: Implications for Neoproterozoic plate reconstructions. Journal of Geophysical Research 102, 7887–902.CrossRefGoogle Scholar
Hallam, A. 1973. A revolution in the Earth sciences: from continental drift to plate tectonics. Oxford: Clarendon Press.Google Scholar
Harland, W. B. & Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans. Geological Magazine 109, 289314.CrossRefGoogle Scholar
Hatcher, R. D. 1989. Tectonic synthesis of the U.S. Appalachians. In Hatcher, R. D., Thomas, W. A. & Viele, G. W. (eds), The Geology of North America: The Appalachian-Ouachita orogen in the United States, F–2, 511–35. Boulder, Colorado: Geological Society of America.Google Scholar
Hoffman, P. F. 1988. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543603.CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 252, 1409–12.CrossRefGoogle ScholarPubMed
Holmes, A. 1944. Principles of Physical Geology. London and Edinburgh: T. Nelson.Google Scholar
Huff, W. D., Bergstrom, S. M., Kolata, D. R.Cingolani, C. A. et al. 1998. Ordovician K-bentonites in the Argentine Precordillera; relations to Gondwana margin evolution. In Pankhurst, R. J. & Rapela, C. W. (eds), The Proto-Andean Margins of Gondwana, Geological Society, London, Special Publication 142, 107–26.CrossRefGoogle Scholar
Litherland, M., Annells, R. N., Darbyshire, D. P. F., Fletcher, C. J. N. et al. 1989. The Proterozoic of Eastern Bolivia and its relationship to the Andean Mobile Belt. Precambrian Research 43, 157–74.CrossRefGoogle Scholar
Litherland, M., Klinck, B. A., O'Connor, E. A. & Pitfield, P. E. J. 1985. Andean-trending mobile belts in the Brazilian Shield. Nature 314, 345–78.CrossRefGoogle Scholar
Litherland, M., Annells, R. N., Appleton, J. D., Berrange, J. P. et al. 1986. The geology and mineral resources of the Bolivian Precambrian shield. British Geological Survey, Overseas Memoir 153.Google Scholar
Loewy, S., Connelly, J., Dalziel, I. W. D., Gower, C. et al. 2000. Testing a proposed Rodinia reconstruction using Pb Isotopes and U-Pb geochronology. GSA Abstracts with Programs (2000 GSA Annual Meeting, Reno, Nevada) 32, A455.Google Scholar
Maxwell, A. E., VonHerzen, R. P. Herzen, R. P., Andrews, J. E., Boyce, R. E. et al. 1970. Initial Reports of the Deep Sea Drilling Project: covering Leg 3 of the Cruises of the drilling vessel ‘Glomar Challenger,’ Dakar, Senegal to Rio de Janeiro, Brazil December 1968 to January 1969. College Station, TX: Texas A & M University, Ocean Drilling Program.Google Scholar
McKerrow, W. S., MacNiocaill, C. & Dewey, J. F. 2000. The Caledonian Orogengy redefined. Journal of the Geological Society, London 157, 1149–54.CrossRefGoogle Scholar
McKerrow, W. S. & Scotese, C. R. (eds) 1990. Palaeozoic Palaeogeography and Biogeography, Geological Society, London, Memoir 12. London: The Geological Society.Google Scholar
Moores, E. M. 1991. Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis. Geology 19, 425–8.2.3.CO;2>CrossRefGoogle Scholar
Peach, B. N., Home, J., Gunn, W., Clough, C. T. et al. 1907. The geological structure of the north-west Highlands of Scotland Geological Survey of Scotland Memoirs 668.Google Scholar
Peach, B. N. & Home, J. 1899. The Silurian Rocks of Britain Volume 1: Scotland. Memoirs of the Geological Survey of the United Kingdom. Glasgow: HMSO.Google Scholar
London: Geological Society of Great Britain.Google Scholar
Rapalini, A. E. & Astini, R. A. 1998. Paleomagnetic confirmation of the Laurentian origin of the Argentine Precordillera. Earth and Planetary Science Letters 155, 114.CrossRefGoogle Scholar
Salter, J. W. 1859. Durness limestone fossils. Quarterly Journal of the Geological Society, London 15, 374–81.Google Scholar
Soper, N. J. 1994. Neoproterozoic sedimentation on the NE margin of Laurentia and the opening of Iapetus. Geological Magazine 131, 291–9.CrossRefGoogle Scholar
Spencer, A. M. 1971. Late Pre-Cambrian glaciation in Scotland, Memoir—Geological Society of London. London: The Geological Society.Google Scholar
Suess, E. 18851909. Das Antlitz der Erde (The face of the Earth) 5 vols. Wien: Freytag.Google Scholar
Tanner, P. W. G. & Pringle, M. S. 1999. Testing for the presence of a terrane boundary within Neoproterozoic (Dalradian) to Cambrian siliceous turbidites at Callander, Perthshire, Scotland. Journal of the Geological Society, London 156, 1205–16.CrossRefGoogle Scholar
Thomas, W. A. & Astini, R. A. 1996. The Argentine Precordillera: a traveler from the Ouachita Embayment of North American Laurentia. Science 283, 752–7.CrossRefGoogle Scholar
Torsvik, T. H. & Trench, A. 1991. The Ordovician history of the Iapetus Ocean in Britain: new paleomagnetic constraints. Journal of the Geological Society, London 148, 423–5.CrossRefGoogle Scholar
Tosdal, R. M. 1996. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and Northern Chile. Tectonics 15, 827–42.CrossRefGoogle Scholar
Unrug, R. 1997. Geodynamic map of Gondwana super continent assembly. Orléans, France: Bureau de Recherches Géologiques et Minières.Google Scholar
van, Staal C. R., Dewey, J. F., MacNiocaill, C. & McKerrow, W. S. 1998. The Cambrian-Silurian tectonic evolution of the Northern Appalachians and British Caledonides; history of a complex, west and southwest Pacific-type segment of Iapetus. In Blundell, D. & Scott, A. C. (eds) Lyell, the past is the key to the present, Geological Society, London, Special Publication 143, 199242.Google Scholar
Vance, D., Strachan, R. A. & Jones, K. A. 1998. Extensional versus compressional settings for metamorphism: garnet chronometry and pressure-temperature-time histories in the Moine Supergroup, Northwest Scotland. Geology (Boulder) 26, 927–30.2.3.CO;2>CrossRefGoogle Scholar
Vine, F. J. & Matthews, D. H. 1963. Magnetic anomalies over oceanic ridges. Nature, 199, 947–9.CrossRefGoogle Scholar
Wasteneys, H. A., Clark, A. H., Langridge, R. J. & Farrar, E. 1993. Granulite facies metamorphism in the Arequipa massif of southern Peru: Grenvillian, not Early Proterozoic in age. Geological Association of Canada and Mineralogical Association of Canada Program and Abstracts 18, A109.Google Scholar
Wasteneys, H. A., Clark, A. H., Ferrar, E. & Langridge, R. J. 1995. Grenvillian granulite facies metamorphism in the Arequipa Massif, Peru: a Laurentia-Gondwana link. Earth and Planetary Science Letters 132, 6373.CrossRefGoogle Scholar
Wegener, A. 1912. Die Entstehung der Kontinente. Geologische Rundschau 3, 276–92.CrossRefGoogle Scholar
Wilson, J. T. 1966. Did the Atlantic close and then re-open? Nature 211, 676–81.CrossRefGoogle Scholar