Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T07:09:30.106Z Has data issue: false hasContentIssue false

Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France)

Published online by Cambridge University Press:  24 September 2018

Cédric Del Rio*
Affiliation:
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P-UMR 7207, CNRS, MNHN, UPMC, Muséum national d'Histoire naturelle, Sorbonne-Université, CP38, 57 rue Cuvier, 75231, Paris Cedex 05, France. Email: [email protected] Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne-Université, CP39, 57 rue Cuvier, 75231, Paris Cedex 05, France.
Romain Thomas
Affiliation:
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P-UMR 7207, CNRS, MNHN, UPMC, Muséum national d'Histoire naturelle, Sorbonne-Université, CP38, 57 rue Cuvier, 75231, Paris Cedex 05, France. Email: [email protected]
Dario De Franceschi
Affiliation:
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P-UMR 7207, CNRS, MNHN, UPMC, Muséum national d'Histoire naturelle, Sorbonne-Université, CP38, 57 rue Cuvier, 75231, Paris Cedex 05, France. Email: [email protected]
*
*Corresponding authors

Abstract

Icacinaceae Miers are a family of trees, shrubs, and lianas with a current pantropical distribution. The family is well known in the fossil record, especially from the Palaeogene of Europe and North America, with the modern genus Iodes being particularly well represented. Here, we describe five new species of Iodes based on fossil endocarps with horn-like protrusions from the late Palaeocene Rivecourt deposits (Oise, France). Moreover, we propose a new combination for Iodes israelii Soudry & Gregor, as Icacinicarytes israelii (Soudry & Gregor) Del Rio, Thomas & De Franceschi, because it lacks the diagnostic morphological and anatomical characters of the genus Iodes. The significance of papillae, which has been emphasised in the literature, is discussed in light of new data, and a more standardised system of terminology is proposed. Given that, among modern members of Iodes, horn-like protrusions are only known from Asian species; the fossils described here suggest an affinity between the late Palaeocene flora of Europe and the modern flora of Asia. Finally, this study represents the first detailed investigation of Icacinaceae from the Paris Basin, where palaeocarpology remains understudied.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Allen, S. E., Stull, G. W. & Manchester, S. R. 2015. Icacinaceae from the Eocene of Western North America. American Journal of Botany 102, 725744.Google Scholar
APG. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 141, 399436.Google Scholar
Boutique, R. 1960. Icacinaceae. In Robyns, W. (ed.) Flore du Congo Belge et du Ruanda-Urundi, 9, 237278. Brussels: INEAC.Google Scholar
Byng, J. W., Bernardini, B., Joseph, J. A., Chase, M. W. & Utteridge, T. 2014. Phylogenetic relationships of Icacinaceae focusing on the vining genera. Botanical Journal of the Linnean Society 176, 277294.Google Scholar
Chandler, M. E. 1954. Some Upper Cretaceous and Eocene fruits from Egypt (with appendices by M. Y. Hassan & M. I. Youssef). British Museum of Natural History, Bulletin Geology 2, 149187.Google Scholar
Chandler, M. E. 1961a. Plant remains of the Hengistbury and Barton beds. London: British Museum of Natural History. 238 pp.Google Scholar
Chandler, M. E. 1961b. The lower tertiary floras of southern England. I. London: British Museum of Natural History. 354 pp.Google Scholar
Chandler, M. E. 1962. The lower tertiary floras of southern England. II. Flora of the pipe-clay series of Dorset (lower Bagshot). London: British Museum of Natural History. 176 pp.Google Scholar
Chester, K. I. M. 1955. Some plant remains from the Upper Cretaceous and Tertiary of West Africa. Annals & Magazine of Natural History 8, 498504.Google Scholar
Cleal, C. J., Thomas, B. A., Batten, D. J. & Collinson, M. E. 2001. Mesozoic and Tertiary Paleobotany of Great Britain, 22. Peterborough: Geological Conservation Review Series. 335 pp.Google Scholar
Collinson, M. E. 1983. Fossil plants of the London Clay. London: Palaeontological Society. 121 pp.Google Scholar
Crane, P. R., Manchester, S. R. & Dilcher, D. L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Geology 20, 163.Google Scholar
De La Bâthie, P. 1952. Icacinaceae. In Humbert, H. (ed.) Flore de Madagascar et des Comores, 119, 145. Paris: Firmin-Didot.Google Scholar
Engler, A. 1897. Icacinaceae. In Engler, A. & Prantl, K. (eds) Die natürlichen pflanzenfamilien, 3, 233257. Leipzig: Engelmann.Google Scholar
Fairon-Demaret, M. & Smith, T. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene–Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122, 4762.Google Scholar
Jacques, F. M. B. & De Franceschi, D. 2005. Endocarps of Menispermaceae from Le Quesnoy Outcrop (Sparnacian Facies, Lower Eocene, Paris Basin). Review of Palaeobotany and Palynology 135, 6170.Google Scholar
Kårehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88, 22592274.Google Scholar
Knobloch, E. & Mai, D. H. 1986. Monographie der furche und samen in der kreide von Mitteleuropa. Praha: Vydal Ustredni ustav geologicky. 219 pp.Google Scholar
Lens, F., Karehed, J., Baas, P., Jansen, S., Rabaey, D., Huysmans, S., Hamann, T. & Smets, E. 2008. The wood anatomy of the polyphyletic Icacinaceae Sl, and their relationships within asterids. Taxon 57, 525552.Google Scholar
Manchester, S. R. 1994. Fruits and seeds of the Middle Eocene nut beds flora, Clarno Formation, Oregon, 58. New York: Palaeontolographica Americana. 205 pp.Google Scholar
Manchester, S. R. 1999. Biogeographical relationships of North American tertiary floras. Annals of the Missouri Botanical Garden 86, 472.Google Scholar
Peng, H. & Howard, R. A. 2008. Icacinaceae. In Zhengyi, W. & Raven, P. H. (eds) Flora of China, 11, 505513. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.Google Scholar
Pigg, K. B., Manchester, S. R. & DeVore, M. L. 2008. Fruits of Icacinaceae (tribe Iodeae) from the Late Paleocene of western North America. American Journal of Botany 95, 824832.Google Scholar
Pigg, K. B. & Wher, W. C. 2002. Tertiary flowers, fruits, and seeds of Washington state and adjacent area-part III. Washington Geology 30, 316.Google Scholar
Rankin, B. D., Stockey, R. A. & Beard, G. 2008. Fruits of Icacinaceae from the Eocene Appian Way locality of Vancouver Island, British Columbia. International Journal of Plant Sciences 169, 305314.Google Scholar
Rasband, W. S. 2016. ImageJ website. https://imagej.nih.gov/ij/.Google Scholar
Reid, E. M. & Chandler, M. E. 1933. The London Clay flora. London: British Museum Natural History. 561 pp.Google Scholar
Sleumer, H. 1942. Icacinaceae. In Engler, A. (ed.) Die natürlichen pflanzenfamilien, 20b, 322396. Leipzig: Engelmann.Google Scholar
Sleumer, H. 1971. Icacinaceae. In Van Steenis, C. G. G. J. (ed.) Flora Malesiana, 7, 187. Leyden: Noordhoff.Google Scholar
Smith, T., Rose, K. D. & Gingerich, P. D. 2006. Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proceedings of the National Academy of Sciences 103, 11223–27.Google Scholar
Smith, T., Quesnel, F., De Plöeg, G., De Franceschi, D., Métais, G., De Bast, E. Solé, F., Folie, A., Boura, A., Claude, J., Dupuis, C., Gagnaison, C., Iakovleva, A., Martin, J., Maubert, F., Prieur, J., Roche, E., Storme, J.-Y., Thomas, R., Tong, H., Yans, J. & Buffetaut, E. 2014. First Clarkforkian equivalent land mammal age in the latest Paleocene basal Sparnacian Facies of Europe: fauna, flora, paleoenvironment and (bio)stratigraphy. PLoS One 9, 120.Google Scholar
Soltis, D. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133, 381461.Google Scholar
Soudry, D. & Gregor, H. -J. 1997. Jodes israelii sp. nov.: a huge phosphate-mineralized Icacinacean fructification from the Late Cretaceous of the Negev, southern Israel. Cretaceous Research 18, 161178.Google Scholar
Stull, G. W., Moore, B. R. & Manchester, S. R. 2011. Fruits of Icacinaceae from the Eocene of southeastern North America and their biogeographic implications. International Journal of Plant Sciences 172, 935947.Google Scholar
Stull, G. W., Herrera, F., Manchester, S. R., Jaramillo, C. & Tiffney, B. H. 2012. Fruits of an ‘Old World' tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Systematic Botany 37, 784794.Google Scholar
Stull, G. W., Duno de Stefano, R., Soltis, D. E. & Soltis, P. S. 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. American Journal of Botany 102, 17941813.Google Scholar
Stull, G. W., Neil, F. A., Manchester, S. R., Sykes, D. & Collinson, M. E. 2016. Revision of Icacinaceae from the Early Eocene London Clay flora based on X-ray micro-CT. Botany 94, 713745.Google Scholar
Tanai, T. 1990. Euphorbiaceae and Icacinaceae from the Paleogene of Hokkaido, Japan. Bulletin of the National Science Museum, Tokyo Series C 18, 91118.Google Scholar
Villiers, J. -F. 1973. Icacinaceae. In Aubréville, A. & Leroy, J.-F. (ed.) Flore du Cameroun, 3100. Paris: Museum national d'Histoire naturelle.Google Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M. & Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310, 993995.Google Scholar
Wolfe, J. A. 1975. Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and tertiary. Annals of the Missouri Botanical Garden 62, 264279.Google Scholar