Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T07:16:47.777Z Has data issue: false hasContentIssue false

Form and function in Thylacocephala, Conchyliocarida and Concavicarida (?Crustacea): a problem of interpretation

Published online by Cambridge University Press:  03 November 2011

W. D. Ian Rolfe
Affiliation:
Hunterian Museum, University of Glasgow, Glasgow G12 8QQ, Scotland.

Abstract

Differences in the preservation of Jurassic thylacocephalans and conchyliocarids have given rise to different interpretations of the form of these fossils, and thus their mode of life. When evidence from these two groups is combined with that derived from Palaeozoic concavicarids, it becomes possible to unify the several interpretations of this one group of organisms, the Thylacocephala. The group ranges from at least the Silurian to the Cretaceous.

A review is given of how these differences of interpretation have arisen, and some resolution is attempted. If the thylacocephalan “anterior structure” is reinterpreted by analogy with hyperiid amphipods as a paired compound eye occupying most of the surface of the head, it explains its bilobed nature and the position of the stomach within the structure, but it raises the difficulty of a post-cephalic origin for the carapace. The simpler solution is preferred of regarding this structure as discrete paired eyes with a smooth cornea and subjacent crystal cones.

The raptorial appendages are post-oral and post-adductor in insertion. They are therefore tentatively identified as the maxillae and maxilliped, but verification of the mandible's position is needed to test this. The postero-ventral battery of “body somites” is reinterpreted as paired protopods of abdominal limbs. A respiratory current is deduced to have entered a branchiostegal chamber ventrally, and left it posterodorsally. It is speculated that the looped linear pattern of intra-cuticular spheres in Paraostenia are photophores. The large eyes with small interommatidial angles were probably used to discern low contrast prey or carrion against a dim background. By analogy with hyperiid amphipods, it is suggested that at least some thylacocephalans were mesopelagic predators. They may have attained neutral buoyancy from their food substrate of shark and coleoids.

Type
The Thylacocephala—a search for understanding
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arduini, P. & Brasca, A. 1984. Atropicaris: nuovo genere della Classe Thylacocephala. ATTI SOC ITAL SCI NAT MUS CIV STOR NAT MILANO 125, 8793.Google Scholar
Arduini, P., Pinna, G. & Teruzzi, G. 1980. A new and unusal Lower Jurassic cirriped from Osteno in Lombardy: Ostenia cypriformis n.g., n.sp. ATTI SOC ITAL SCI NAT MUS CIV STOR NAT MILAN 121, 360–70.Google Scholar
Arduini, P., Pinna, G. & Teruzzi, G. 1984. Ostenocaris nom. nov. pro Ostenia Arduini, Pinna & Teruzzi 1980. ATTI SOC ITAL SCI NAT MUS CIV STOR NAT MILANO 125, 48.Google Scholar
Ball, E. E. 1977. Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat. TISSUE CELL 9, 521–36.CrossRefGoogle ScholarPubMed
Böhm, R. 1935. Etudes sur les faunes du Dévonien supérieur et du Carbonifère inférieur de la Montagne Noire. THESES FAC SCI UNIV MONTPELLIER DOCT SCI NAT.Google Scholar
Bowman, T. & Gruner, H.-E. 1973. The families and genera of Hyperiidea (Crustacea: Amphipoda). SMITHSON CONTRIB ZOOL 146, 164.Google Scholar
Briggs, D. E. G. & Rolfe, W. D. I. 1983. New Concavicarida (new Order: ?Crustacea) from the Upper Devonian of Gogo, Western Australia, and the palaeoecology and affinities of the group. SPEC PAP PALAEONTOL 30, 249–76.Google Scholar
Brusca, G. J. 1981. On the anatomy of Cystisoma (Amphipoda: Hyperiida). J CRUST BIOL 1, 358–75.CrossRefGoogle Scholar
Clarkson, E. N. K. 1973. The eyes of Asaphus raniceps Dalman (Trilobita). PALAEONTOLOGY 16, 425–44.Google Scholar
Dahl, E. 1983. Alternatives in malacostracan evolution. AUST MUS MEM 18, 115.CrossRefGoogle Scholar
Glaessner, M. F. 1931. Eine Crustaceenfauna aus den Lunzer Schichten Niederösterreichs. JAHRB GEOL BUNDESANST 81, 467–86.Google Scholar
Herring, P. J. (ed.) 1978. Bioluminescence in action. London: Academic Press.Google Scholar
Herring, P. J. & Clarke, M. R. (eds) 1971. Deep oceans. London: A. Barker.Google Scholar
Kaestner, A. 1970. Invertebrate zoology, vol. 3. New York: Interscience.Google Scholar
Kunze, P. 1979. Apposition and superposition eyes. In Autrum, H. (ed.) Comparative physiology and evolution of vision in vertebrates, vol. VII/6A, 441502. Berlin: Springer.CrossRefGoogle Scholar
Land, M. F. 1980. Compound eyes: old and new optical mechanisms. NATURE LONDON 287, 681–6.CrossRefGoogle ScholarPubMed
Land, M. F. 1981. Optics of the eyes of Phronima and other deep-sea amphipods. J COMP PHYSIOL 145, 209–26.CrossRefGoogle Scholar
McLaughlin, P. A. 1983. Internal anatomy. In Mantel, L. H. (ed.) The biology of Crustacea, vol. 5, 152. New York & London: Academic Press.Google Scholar
McMahon, B. R. & Wilkens, J. L. 1983. Ventilation, perfusion and oxygen uptake. In Mantel, L. H. (ed.) The biology of Crustacea, vol. 5, 289372. New York & London: Academic Press.Google Scholar
Manton, S. M. 1969. Evolution and affinities of Onychophora, Myriapoda, Hexapoda and Crustacea. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, Part R. Arthropoda 4 (1), R1556. New York & Lawrence: Geol. Soc. Am.Google Scholar
Manton, S. M. 1977. The Arthropoda, Habits, Functional Morphology and Evolution. Oxford: Clarendon Press.Google Scholar
Meyer-Rochow, B. & Walsh, S. 1977. The eyes of mesopelagic crustaceans: I. Gennadas sp. (Penaeidae). CELL TISSUE RES 184, 87101.CrossRefGoogle ScholarPubMed
Mikulic, D. G., Briggs, D. E. G., & Kluessendorf, J. 1985a. A Silurian soft-bodied biota. SCIENCE 228(4700), 715–7.CrossRefGoogle ScholarPubMed
Mikulic, D. G., Briggs, D. E. G., & Kluessendorf, J. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. PHIL TRANS R SOC LONDON B287, (in press).Google Scholar
Newman, W. A. & Knight, M. D. 1984. The carapace and crustacean evolution—a rebuttal. J. CRUST BIOL 4, 682–7.CrossRefGoogle Scholar
Pinna, G. 1972. Rinvenimento di un raro cefalopode coleoideo nel giacimento sinemuriano di Osteno in Lombardia. ATTI SOC ITAL SCI NAT MUS CIV STOR NAT MILANO 113, 141–9.Google Scholar
Pinna, G. 1985. Exceptional preservation in the Jurassic of Osteno. PHIL TRANS R SOC LONDON B287, (in press).Google Scholar
Pinna, G., Arduini, P., Pesarini, C. & Teruzzi, G. 1982. Thylacocephala: una nuova Classe di Crostacei fossili. ATTI SOC ITAL SCI NAT MUS CIV STOR NAT MILANO 123, 469–82.Google Scholar
Pinna, G., Arduini, P., Pesarini, C. & Teruzzi, G. 1984. Zamechaniya o nedavno opisannom Klasse rakoobraznykh Thylacocephala i ego sinonim. PALEONTOL ZH 1984, 109–13.Google Scholar
Pinna, G., Arduini, P., Pesarini, C. & Teruzzi, G. 1985. Some controversial aspects of the morphology and anatomy of Ostenocaris cypriformis (Crustacea, Thylacocephala). TRANS R SOC EDINBURGH: EARTH SCI 76, 373–9.Google Scholar
Roger, J. 1946. Les invertébrés des couches à poissons du Cretacé Supérieur du Liban. MEM SOC GEOL FR NS 51, 192.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, Part R, Arthropoda 4 (1), R296331. New York & Lawrence: Geol. Soc. Am.Google Scholar
Rolfe, W. D. I. & Beckett, E. C. M. 1984. Autecology of Silurian Xiphosurida, Scorpionida, Cirripedia and Phyllocarida. SPEC PAP PALAEONTOL 32, 2737.Google Scholar
Secretan, S. 1983. Une nouvelle classe fossile dans la super-classe des Crustacés: Conchyliocarida. C R ACAD SCI PARIS 296, 437–9.Google Scholar
Secretan, S. 1985. Conchyliocarida, a Class of fossil Crustaceans: relationships to Malacostraca and postulated behaviour. TRANS R SOC EDINBURGH: EARTH SCI 76, 381–9.Google Scholar
Secretan, S. & Riou, B. 1983. Un group énigmatique de crustacés: ses représentants du Callovien de la Voulte-sur-Rhône. ANN PALEONTOL 69, 5997.Google Scholar
Shaw, S. R. & Stowe, S. 1982. Photoreception. In Atwood, H. L. & Sandeman, D. C. (eds) The biology of Crustacea, vol. 3, 291367. New York & London: Academic Press.CrossRefGoogle Scholar
Shen, Yan-bin. 1983. A new genus Yangzicaris (phyllocarids) in the Middle Triassic of China. ACTA PALAEONTOL SIN 22, 346–54.Google Scholar
Thorson, G. 1971. Life in the sea. London: Weidenfeld & Nicolson.Google Scholar